Preferred Language
Articles
/
hBeLgJEBVTCNdQwC55Wo
Modified third order iterative method for solving nonlinear equations
...Show More Authors

Many numerical approaches have been suggested to solve nonlinear problems. In this paper, we suggest a new two-step iterative method for solving nonlinear equations. This iterative method has cubic convergence. Several numerical examples to illustrate the efficiency of this method by Comparison with other similar methods is given.

Publication Date
Sat Jan 01 2022
Journal Name
Proceeding Of The 1st International Conference On Advanced Research In Pure And Applied Science (icarpas2021): Third Annual Conference Of Al-muthanna University/college Of Science
Efficient approach for solving high order (2+1)D-differential equation
...Show More Authors

View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Thu Apr 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Efficient Semi-Analytic Technique for Solving Nonlinear Singular Initial Value Problems
...Show More Authors

 The aim of this paper is to present a semi - analytic technique for solving singular initial value problems of ordinary differential equations with a singularity of different kinds to construct polynomial solution using two point  osculatory  interpolation.           The efficiency and accuracy of suggested method is assessed by comparisons with exact and other approximate solutions for a wide classes of non–homogeneous, non–linear singular initial value problems.             A new, efficient estimate of the global error is used for adaptive mesh selection. Also, analyze some of the numerical aspects

... Show More
View Publication Preview PDF
Publication Date
Tue Apr 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Galerkin-Implicit Methods for Solving Nonlinear Hyperbolic Boundary Value Problem
...Show More Authors

This paper is concerned with finding the approximation solution (APPS) of a certain type of nonlinear hyperbolic boundary value problem (NOLHYBVP).  The given BVP is written in its discrete (DI) weak form (WEF), and is proved that  it has a unique APPS, which is obtained via the mixed Galerkin finite element method (GFE) with implicit method (MGFEIM) that reduces the problem to solve the Galerkin nonlinear algebraic system  (GNAS).  In this part, the predictor and the corrector technique (PT and CT) are proved convergent and are used to transform the obtained GNAS to  linear (GLAS ), then the GLAS is solved using the Cholesky method (ChMe). The stability and the convergence of the method are studied. The results

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 02 2014
Journal Name
Baghdad Science Journal
An Approximated Solutions for nth Order Linear Delay Integro-Differential Equations of Convolution Type Using B-Spline Functions and Weddle Method
...Show More Authors

The paper is devoted to solve nth order linear delay integro-differential equations of convolution type (DIDE's-CT) using collocation method with the aid of B-spline functions. A new algorithm with the aid of Matlab language is derived to treat numerically three types (retarded, neutral and mixed) of nth order linear DIDE's-CT using B-spline functions and Weddle rule for calculating the required integrals for these equations. Comparison between approximated and exact results has been given in test examples with suitable graphing for every example for solving three types of linear DIDE's-CT of different orders for conciliated the accuracy of the results of the proposed method.

View Publication Preview PDF
Crossref
Publication Date
Wed Feb 08 2023
Journal Name
Iraqi Journal Of Science
On A Modified SP-Iterative Scheme for Approximating Fixed Point of A Contraction Mapping
...Show More Authors

In this paper, we will show that the Modified SP iteration can be used to approximate fixed point of contraction mappings under certain condition. Also, we show that this iteration method is faster than Mann, Ishikawa, Noor, SP, CR, Karahan iteration methods. Furthermore, by using the same condition, we shown that the Picard S- iteration method converges faster than Modified SP iteration and hence also faster than all Mann, Ishikawa, Noor, SP, CR, Karahan iteration methods. Finally, a data dependence result is proven for fixed point of contraction mappings with the help of the Modified SP iteration process.

View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Arab Journal Of Basic And Applied Sciences
Analytic and numerical solutions for linear and nonlinear multidimensional wave equations
...Show More Authors

View Publication
Crossref (8)
Crossref
Publication Date
Sun Oct 30 2022
Journal Name
Iraqi Journal Of Science
Exact Solution for Systems of Nonlinear (2+1)D-Differential Equations
...Show More Authors

      The aim of this article is to present the exact analytical solution for models as system of (2+1) dimensional PDEs by using a reliable manner based on combined LA-transform with decomposition technique and the results have shown a high-precision, smooth and speed convergence to the exact solution compared with other classic methods. The suggested approach does not need any discretization of the domain or presents assumptions or neglect for a small parameter in the problem and does not need to convert the nonlinear terms into linear ones. The convergence of series solution has been shown with two illustrated examples such (2+1)D- Burger's system and (2+1)D- Boiti-Leon-Pempinelli (BLP) system.

View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Sun Jul 30 2023
Journal Name
Iraqi Journal Of Science
A Numerical Study for Solving the Systems of Fuzzy Fredholm Integral Equations of the Second Kind Using the Adomian Decomposition Method
...Show More Authors

     In this paper, the Adomian decomposition method (ADM) is successfully applied to find the approximate solutions for the system of fuzzy Fredholm integral equations (SFFIEs) and we also study the convergence of the technique. A consistent way to reduce the size of the computation is given to reach the exact solution. One of the best methods adopted to determine the behavior of the approximate solutions. Finally, the problems that have been addressed confirm the validity of the method  applied in this research using a comparison by combining numerical methods such as the Trapezoidal rule and Simpson rule with ADM.

View Publication Preview PDF
Scopus Crossref
Publication Date
Thu May 30 2024
Journal Name
Journal Of Interdisciplinary Mathematics
Laplace transform-adomian decomposition approach for solving random partial differential equations
...Show More Authors

Market share is a major indication of business success. Understanding the impact of numerous economic factors on market share is critical to a company’s success. In this study, we examine the market shares of two manufacturers in a duopoly economy and present an optimal pricing approach for increasing a company’s market share. We create two numerical models based on ordinary differential equations to investigate market success. The first model takes into account quantity demand and investment in R&D, whereas the second model investigates a more realistic relationship between quantity demand and pricing.

Scopus
Publication Date
Wed May 03 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Designing Feed Forward Neural Network for Solving Linear VolterraIntegro-Differential Equations
...Show More Authors

The aim of this paper, is to design multilayer Feed Forward Neural Network(FFNN)to find the approximate solution of the second order linear Volterraintegro-differential equations with boundary conditions. The designer utilized to reduce the computation of solution, computationally attractive, and the applications are demonstrated through illustrative examples.

View Publication Preview PDF