Ti6Al4V alloy is widely used in aerospace and medical applications. It is classified as a difficult to machine material due to its low thermal conductivity and high chemical reactivity. In this study, hybrid intelligent models have been developed to predict surface roughness when end milling Ti6Al4V alloy with a Physical Vapor Deposition PVD coated tool under dry cutting conditions. Back propagation neural network (BPNN) has been hybridized with two heuristic optimization techniques, namely: gravitational search algorithm (GSA) and genetic algorithm (GA). Taguchi method was used with an L27 orthogonal array to generate 27 experiment runs. Design expert software was used to do analysis of variances (ANOVA). The experimental data were divided randomly into three subsets for training, validation, and testing the developed hybrid intelligent model. ANOVA results revealed that feed rate is highly affected by the surface roughness followed by the depth of cut. One-way ANOVA, including a Post-Hoc test, was used to evaluate the performance of three developed models. The hybrid model of Artificial Neural Network-Gravitational Search Algorithm (ANN-GSA) has outperformed Artificial Neural Network (ANN) and Artificial Neural Network-Genetic Algorithm (ANN-GA) models. ANN-GSA achieved minimum testing mean square error of 7.41 × 10−13 and a maximum R-value of 1. Further, its convergence speed was faster than ANN-GA. GSA proved its ability to improve the performance of BPNN, which suffers from local minima problems.
The prediction process of time series for some time-related phenomena, in particular, the autoregressive integrated moving average(ARIMA) models is one of the important topics in the theory of time series analysis in the applied statistics. Perhaps its importance lies in the basic stages in analyzing of the structure or modeling and the conditions that must be provided in the stochastic process. This paper deals with two methods of predicting the first was a special case of autoregressive integrated moving average which is ARIMA (0,1,1) if the value of the parameter equal to zero, then it is called Random Walk model, the second was the exponential weighted moving average (EWMA). It was implemented in the data of the monthly traff
... Show MoreThe research dealt with the effectiveness of prediction and foresight in design as a phenomenon that plays a role in the recipient's engagement with the design, as it shows the interaction between the recipient and the interior space. The designer is keen to diversify his formal vocabulary in a way that secures visual values that call for aesthetic integration, as well as securing mental and kinetic behavioral understanding in the interior space.
As the designer deals with a three-dimensional space that carries many visual scenes, the designer should not leave anything from it without standing on it with study and investigation, and puts the user as a basic goal as he provides interpretive data through prediction and foresight that le
Used in the study especially calibrated Erwa to determine the number of neighborhood or the Alayoshi number of bacteria in the count modeling and casting method dishes in addition to using the drop method yielded significant results for a match between the methods used ..
Experimental study of heat transfer coefficients in air-liquid-solid fluidized beds were carried out by measuring the heat rate and the overall temperature differences across the heater at different operating conditions. The experiments were carried out in Q.V.F. glass column of 0.22 m inside diameter and 2.25 m height with an axially mounted cylindrical heater of 0.0367 m diameter and 0.5 m height. The fluidizing media were water as a continuous phase and air as a dispersed phase. Low density (Ploymethyl-methacrylate, 3.17 mm size) and high density (Glass beads, 2.31 mm size) particles were used as solid phase. The bed temperature profiles were measured axially and radially in the bed for different positions. Thermocouples were connecte
... Show MoreThe distribution of chilled water flow rate in terminal unit is a major factor used to evaluate the performance of central air conditioning unit. In this work, a theoretical chilled water distribution in the terminal units has been studied to predict the optimum heat performance of terminal unit. The central Air-conditioning unit model consists of cooling/ heating coil (three units), chilled water source (chiller), three-way and two-way valve with bypass, piping network, and pump. The term of optimization in terminal unit ingredient has two categories, the first is the uniform of the water flow rate representing in statically permanents standard deviation (minimum value) and the second category is the maximum heat transfer rate fro
... Show MoreThe term “non-violence” is a means of political, social, and advocacy that excludes force in reaching its objectives, and lacks infringement of the rights of non-violence. The policy of non-violence is a beautiful logic of the whole of Islamic creation, in that it is an integral part of the whole structure of Islam and it is a policy of brilliant and brilliant saying in the Almighty: `` Neither level nor good or bad, pay what is better, If that between you and him enmity as if he were intimate guardian (Suratvsalat, verse: 34. Has According to the prophet of Islam, it means that God gives to kindness (kindness) what does not give to violence (Sunan Abu Dawood, 4/255). These terms accurately communicate what is meant by violence and n
... Show MoreProjects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postpo
Education is the most powerful and important weapon in fighting poverty and unemployment because it provides students with new skills that appropriate the new market requirements and fair distribution of natural resources. It also transfers knowledge, skills, and ethics over generations. Education aims to create effective leaders who go under training and rehabilitation process, create a new human and instill faith, generate the creativity and innovation, and keep abreast with scientific process, updating curriculum, and finally, applying the technical education
The developed financial system is essential for increasing economic growth and poverty reduction in the world. The financial development helps in poverty reduction indirectly via intermediate channel which is the economic growth. The financial development enhancing economic development through mobilization of savings and channel them to the most efficient uses with higher economic and social returns. In addition, the economic growth reduces the poverty through two channels. The first is direct by increasing the introduction factors held by poor and improve the situations into the sectors and areas where the poor live. The second is indirect through redistribution the realized incomes from the economic growth as well as the realiz
... Show MoreDiabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show More