The definition of semi-preopen sets were first introduced by "Andrijevic" as were is defined by :Let (X , ï´ ) be a topological space, and let A ⊆, then A is called semi-preopen set if ⊆∘ . In this paper, we study the properties of semi-preopen sets but by another definition which is equivalent to the first definition and we also study the relationships among it and (open, α-open, preopen and semi-p-open )sets.
Czerwi’nski et al. introduced Lucky labeling in 2009 and Akbari et al and A.Nellai Murugan et al studied it further. Czerwi’nski defined Lucky Number of graph as follows: A labeling of vertices of a graph G is called a Lucky labeling if for every pair of adjacent vertices u and v in G where . A graph G may admit any number of lucky labelings. The least integer k for which a graph G has a lucky labeling from the set 1, 2, k is the lucky number of G denoted by η(G). This paper aims to determine the lucky number of Complete graph Kn, Complete bipartite graph Km,n and Complete tripartite graph Kl,m,n. It has also been studied how the lucky number changes whi
... Show MoreThroughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise closure topological spaces, fibrewise wake topological spaces, fibrewise strong topological spaces over B. Also, we introduce the concepts of fibrewise w-closed (resp., w-coclosed, w-biclosed) and w-open (resp., w-coopen, w-biopen) topological spaces over B; Furthermore we state and prove several Propositions concerning with these concepts.
Throughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.
The definition of semi-preopen sets were first introduced by "Andrijevic" as were is defined by :Let (X , ï´ ) be a topological space, and let A ⊆, then Ais called semi-preopen set if ⊆∘ . In this paper, we study the properties of semi-preopen sets but by another definition which is equivalent to the first definition and we also study the relationships among it and (open, α-open, preopen and semi-p-open )sets.
The structure of this paper includes an introduction to the definition of the nano topological space, which was defined by M. L. Thivagar, who defined the lower approximation of G and the upper approximation of G, as well as defined the boundary region of G and some other important definitions that were mentioned in this paper with giving some theories on this subject. Some examples of defining nano perfect mappings are presented along with some basic theories. Also, some basic definitions were presented that form the focus of this paper, including the definition of nano pseudometrizable space, the definition of nano compactly generated space, and the definition of completely nano para-compact. In this paper, we presented images of nan
... Show MoreIn this paper we define and study new concepts of functions on fibrewise topological spaces over B namely, fibrewise weakly (resp., closure, strongly) continuoac; funttions which are analogous of weakly
(resp., closure, strongly) continuous functions and the main result is : Let <p : XY be a fibrewise closure (resp., weakly, closure, strongly, strongly) continuous function, where Y is fibrewise topological space over B and X is a fibrewise set which has the
in
... Show MoreThe focus of this paper is the presentation of a new type of mapping called projection Jungck zn- Suzuki generalized and also defining new algorithms of various types (one-step and two-step algorithms) (projection Jungck-normal N algorithm, projection Jungck-Picard algorithm, projection Jungck-Krasnoselskii algorithm, and projection Jungck-Thianwan algorithm). The convergence of these algorithms has been studied, and it was discovered that they all converge to a fixed point. Furthermore, using the previous three conditions for the lemma, we demonstrated that the difference between any two sequences is zero. These algorithms' stability was demonstrated using projection Jungck Suzuki generalized mapping. In contrast, the rate of convergenc
... Show More