In this golden age of rapid development surgeons realized that AI could contribute to healthcare in all aspects, especially in surgery. The aim of the study will incorporate the use of Convolutional Neural Network and Constrained Local Models (CNN-CLM) which can make improvement for the assessment of Laparoscopic Cholecystectomy (LC) surgery not only bring opportunities for surgery but also bring challenges on the way forward by using the edge cutting technology. The problem with the current method of surgery is the lack of safety and specific complications and problems associated with safety in each laparoscopic cholecystectomy procedure. When CLM is utilize into CNN models, it is effective at predicting time series tasks like identifying the sequence of events in the Laparoscopic Cholecystectomy (LC). This study will contribute to show the effectiveness of CNN-CLM approach on laparoscopic cholecystectomy, which will frequently focus on surgical computer vision analysis of surgical safety and related applications. The method of study is deep learning based CNN-CLM to better detect nominal safety as well as unsafe practices around the critical view of safety and AI-based grading scale. The general design flow of AI-recognition of surgical safety is firstly collecting safety surgical videos for frame segmenting and phase according to the image context by surgeon reviewer by CNN-CLM. For this advance research, the dataset is splatted into three main parts where 70% of which is used for training, 15% of which is used for testing and the rest for the cross validation, to achieve the accuracy up to 98.79% of this specific research. For result part, different metrics of CNN-CLM to evaluate the performance of the proposed model of safety in surgery. The study uses one of the top three performing methods CNN-CLM for the evaluation yields and anatomical structures in laparoscopic cholecystectomy surgery.
The kaizen is considered as one of the most important modern techniques which has been adopted by various economics entities especially manufacturing firms and its beginnings return to the middle of the earlier century that has been used by companies like Toshiba, Matsushita Electric, and Toyota. Which realized that these modern techniques would make a total change in the competitive environment and started qualifying and its staff in such away that enables them to go along with this unique environment. The continuous improvement (Kaizen) depends on the small continuous improvements in the product and the production operations during the production stage. Consequently, the research problem is represented in the improperly of the budg
... Show MoreThis work includes the synthesis of new ester compounds containing two 1,3,4-oxadiazole rings, 15a-c and 16a-c. This was done over seven steps, starting with p-acetamido-phenol 1 and 2-mercaptobenzoimidazole 2. The structure of the products was determined using FT-IR, 1H NMR, and mass spectroscopy. The evaluation of the antimicrobial activities of some prepared compounds was achieved against four types of bacteria (two types of gram-positive bacteria; Staphylococcus aureus and Bacillus subtilis, and two types of gram-negative bacteria, Pseudomonas aeruginosa and E. Coli), as well as against one types of fungus (C. albino). The results show moderate activit against the study bacteria, and the theoretical analysis of the toxi
... Show MoreThis work investigates the effect of the gas nitriding process on the surface layer microstructure and mechanical properties for steel 37, tool steel X155CrVMo12-1 and stainless steel 316L. Nitriding was conducted at a temperature of 550 °C for 2 hours during the first stage and at 750 °C for 4 hours during the second stage. SEM and X-ray diffraction tests were performed to evaluate the microstructural features and the major phases formed after surface treatment. SEM and X-ray diffraction tests were performed to assess the microstructural features and the primary phases formed after surface treatment. The new secondary precipitates were identified as γ′-Fe4N, ε (Fe2–3N), and α-Fe, exhibiting an uneven chain-like pattern wit
... Show MoreIn this paper, the complexes of Shiff base of Methyl -6-[2-(diphenylmethylene)amino)-2-(4-hydroxyphenyl)acetamido]-2,2-dimethyl-5-oxo-1-thia-4-azabicyclo[3.2.0]heptane-3-carboxylate (L) with Cobalt(II), Nickel(II), Cupper(II) and Zinc(II) have been prepared. The compounds have been characterized by different means such as FT-IR, UV-Vis, magnetic moment, elemental microanalyses (C.H.N), atomic absorption, and molar conductance. It is obvious when looking at the spectral study that the overall complexes obtained as monomeric structure as well as the metals center moieties are two-coordinated with octahedral geometry excepting Co complexes that existed as a tetrahedral geometry. Hyper Chem-8.0.7
... Show MoreIn this paper, the speed control of the real DC motor is experimentally investigated using nonlinear PID neural network controller. As a simple and fast tuning algorithm, two optimization techniques are used; trial and error method and particle swarm optimization PSO algorithm in order to tune the nonlinear PID neural controller's parameters and to find best speed response of the DC motor. To save time in the real system, a Matlab simulation package is used to carry out these algorithms to tune and find the best values of the nonlinear PID parameters. Then these parameters are used in the designed real time nonlinear PID controller system based on LabVIEW package. Simulation and experimental results are compared with each other and showe
... Show MoreThis paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi
Most of drinking water consuming all over the world has been treated at the water treatment plant (WTP) where raw water is abstracted from reservoirs and rivers. The turbidity removal efficiency is very important to supply safe drinking water. This study is focusing on the use of multiple linear regression (MLR) and artificial neural network (ANN) models to predict the turbidity removal efficiency of Al-Wahda WTP in Baghdad city. The measured physico-chemical parameters were used to determine their effect on turbidity removal efficiency in various processes. The suitable formulation of the ANN model is examined throughout many preparations, trials, and steps of evaluation. The predict