In this golden age of rapid development surgeons realized that AI could contribute to healthcare in all aspects, especially in surgery. The aim of the study will incorporate the use of Convolutional Neural Network and Constrained Local Models (CNN-CLM) which can make improvement for the assessment of Laparoscopic Cholecystectomy (LC) surgery not only bring opportunities for surgery but also bring challenges on the way forward by using the edge cutting technology. The problem with the current method of surgery is the lack of safety and specific complications and problems associated with safety in each laparoscopic cholecystectomy procedure. When CLM is utilize into CNN models, it is effective at predicting time series tasks like identifying the sequence of events in the Laparoscopic Cholecystectomy (LC). This study will contribute to show the effectiveness of CNN-CLM approach on laparoscopic cholecystectomy, which will frequently focus on surgical computer vision analysis of surgical safety and related applications. The method of study is deep learning based CNN-CLM to better detect nominal safety as well as unsafe practices around the critical view of safety and AI-based grading scale. The general design flow of AI-recognition of surgical safety is firstly collecting safety surgical videos for frame segmenting and phase according to the image context by surgeon reviewer by CNN-CLM. For this advance research, the dataset is splatted into three main parts where 70% of which is used for training, 15% of which is used for testing and the rest for the cross validation, to achieve the accuracy up to 98.79% of this specific research. For result part, different metrics of CNN-CLM to evaluate the performance of the proposed model of safety in surgery. The study uses one of the top three performing methods CNN-CLM for the evaluation yields and anatomical structures in laparoscopic cholecystectomy surgery.
KE Sharquie, MM Al-Waiz, AA Al-Nuaimy, IRAQI JOURNAL OF COMMUNITY MEDICINE, 2006
This study aims to explore the potential mediation role of person-centeredness between the effects of the work environment and nurse reported quality and patient safety. A quantitative cross-sectional survey collected data from 1055 nurses, working in medical and surgical units, in twelve Malaysian private hospitals. The data collection used structured questionnaires. The Hayes macro explored the mediation effect of person-centeredness between the associations of work environment dimensions and care outcomes, controlling nurses’ demographics and practice characteristics. A total of 652 nurses responded completely to the survey (61.8% response rate). About 47.7% of nurses worked 7-h shifts, and 37.0% were assigned more than 15 pati
... Show MoreEndoglucanase produced from Aspergillus flavus was purified by several steps including precipitation with 25 % ammonium sulphate followed by Ion –exchange chromatography, the obtained specific activity was 377.35 U/ mg protein, with a yield of 51.32 % .This step was followed by gel filtration chromatography (Sepharose -6B), when a value of specific activity was 400 U/ mg protein, with a yield of 48 %. Certain properties of this purified enzyme were investigated, the optimum pH of activity was 7 and the pH of its stability was 4.5, while the temperature stability was 40 °C for 60 min. The enzyme retained 100% of its original activity after incubation at 40 °C for 60 min; the optimum temperature for enzyme activity was 40 °C.
The hydrolysis of urea by the enzyme urease is significant for increasing the irroles in human pathogenicity, biocementation, soil fertilizer, and subsequently in soil improvement. This study devoted to the isolation of urease from urea-rich soil samples collected from seven different locations. Isolation of the various bacterial species was conducted using nutrient agar. The identity of isolated urease was based on morphological characteristics and standard microbiological and biochemical procedures. The urease producing strains of bacteria were obtained using the urease hydrolysis test. The bacterial isolates produced from soil samples collected from different environments and treat
Beta-lactamase was purified from local isolate Klebsiella pneumonia by several steps included precipitation with ammonium sulphate at 20-40% saturation, DEAE- ion exchange chromatography and gel filtration on Sephacryl S-200 column. The obtained purification fold and recovery were 32.66; 47.04% respectively. The characterization of the purified beta-lactamase showed that the molecular weight was about 4000 daltons as determined by gel filtration.Purified enzyme had an optimal pH of 7 for activity and an optimal stability between pH 6.5-7.5, results shows that the optimal temperature appear to be 35 ? C .During storage the enzyme retained 72% at -20 ? C and retained 25% of the activity at the same period at 4 ? C.
Twenty isolates of Serratia marcescens were isolated from inflammation of the urinary tract (UTI)., These isolates were found to produce hemolysin as indicated by blood agar plates in which the hemolysis of red blood cell indicate a positive result. Isolates were selected according to their hemolysis activity by measuring absorbance of hemoglobin at 405 nm that released from red blood cell. Hemolysin was completely purified using 50-75% saturation of ammonium sulphate followed by ion exchange chromatography with DEAE-cellulose then gel filtration chromatography by sepharose 4B. Accordingly molecular weight for the purified toxin was estimated as 45 KD.
In this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de
... Show MoreUrban land price is the primary indicator of land development in urban areas. Land prices in holly cities have rapidly increased due to tourism and religious activities. Public agencies are usually facing challenges in managing land prices in religious areas. Therefore, they require developed models or tools to understand land prices within religious cities. Predicting land prices can efficiently retain future management and develop urban lands within religious cities. This study proposed a new methodology to predict urban land prices within holy cities. The methodology is based on two models, Linear Regression (LR) and Support Vector Regression (SVR), and nine variables (land price, land area,
... Show MoreIn drilling processes, the rheological properties pointed to the nature of the run-off and the composition of the drilling mud. Drilling mud performance can be assessed for solving the problems of the hole cleaning, fluid management, and hydraulics controls. The rheology factors are typically termed through the following parameters: Yield Point (Yp) and Plastic Viscosity (μp). The relation of (YP/ μp) is used for measuring of levelling for flow. High YP/ μp percentages are responsible for well cuttings transportation through laminar flow. The adequate values of (YP/ μp) are between 0 to 1 for the rheological models which used in drilling. This is what appeared in most of the models that were used in this study. The pressure loss
... Show MoreHome Computer and Information Science 2009 Chapter The Stochastic Network Calculus Methodology Deah J. Kadhim, Saba Q. Jobbar, Wei Liu & Wenqing Cheng Chapter 568 Accesses 1 Citations Part of the Studies in Computational Intelligence book series (SCI,volume 208) Abstract The stochastic network calculus is an evolving new methodology for backlog and delay analysis of networks that can account for statistical multiplexing gain. This paper advances the stochastic network calculus by deriving a network service curve, which expresses the service given to a flow by the network as a whole in terms of a probabilistic bound. The presented network service curve permits the calculation of statistical end-to-end delay and backlog bounds for broad
... Show More