In this golden age of rapid development surgeons realized that AI could contribute to healthcare in all aspects, especially in surgery. The aim of the study will incorporate the use of Convolutional Neural Network and Constrained Local Models (CNN-CLM) which can make improvement for the assessment of Laparoscopic Cholecystectomy (LC) surgery not only bring opportunities for surgery but also bring challenges on the way forward by using the edge cutting technology. The problem with the current method of surgery is the lack of safety and specific complications and problems associated with safety in each laparoscopic cholecystectomy procedure. When CLM is utilize into CNN models, it is effective at predicting time series tasks like identifying the sequence of events in the Laparoscopic Cholecystectomy (LC). This study will contribute to show the effectiveness of CNN-CLM approach on laparoscopic cholecystectomy, which will frequently focus on surgical computer vision analysis of surgical safety and related applications. The method of study is deep learning based CNN-CLM to better detect nominal safety as well as unsafe practices around the critical view of safety and AI-based grading scale. The general design flow of AI-recognition of surgical safety is firstly collecting safety surgical videos for frame segmenting and phase according to the image context by surgeon reviewer by CNN-CLM. For this advance research, the dataset is splatted into three main parts where 70% of which is used for training, 15% of which is used for testing and the rest for the cross validation, to achieve the accuracy up to 98.79% of this specific research. For result part, different metrics of CNN-CLM to evaluate the performance of the proposed model of safety in surgery. The study uses one of the top three performing methods CNN-CLM for the evaluation yields and anatomical structures in laparoscopic cholecystectomy surgery.
Software-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybr
... Show MoreThis study looks into the many methods that are used in the risk assessment procedure that is used in the construction industry nowadays. As a result of the slow adoption of novel assessment methods, professionals frequently resort to strategies that have previously been validated as being successful. When it comes to risk assessment, having a precise analytical tool that uses the cost of risk as a measurement and draws on the knowledge of professionals could potentially assist bridge the gap between theory and practice. This step will examine relevant literature, sort articles according to their published year, and identify domains and qualities. Consequently, the most significant findings have been presented in a manne
... Show MoreAbstract
Travel Time estimation and reliability measurement is an important issues for improving operation efficiency and safety of traffic roads networks. The aim of this research is the estimation of total travel time and distribution analysis for three selected links in Palestine Arterial Street in Baghdad city. Buffer time index results in worse reliability conditions. Link (2) from Bab Al Mutham intersection to Al-Sakara intersection produced a buffer index of about 36% and 26 % for Link (1) Al-Mawall intersection to Bab Al- Mutham intersection and finally for link (3) which presented a 24% buffer index. These illustrated that the reliability get worst for link
... Show MoreThe gravity method is a measurement of relatively noticeable variations in the Earth’s gravitational field caused by lateral variations in rock's density. In the current research, a new technique is applied on the previous Bouguer map of gravity surveys (conducted from 1940–1950) of the last century, by selecting certain areas in the South-Western desert of Iraqi-territory within the provinces' administrative boundary of Najaf and Anbar. Depending on the theory of gravity inversion where gravity values could be reflected to density-contrast variations with the depths; so, gravity data inversion can be utilized to calculate the models of density and velocity from four selected depth-slices 9.63 Km, 1.1 Km, 0.682 Km and 0.407 Km.
... Show MoreIn light of the development in computer science and modern technologies, the impersonation crime rate has increased. Consequently, face recognition technology and biometric systems have been employed for security purposes in a variety of applications including human-computer interaction, surveillance systems, etc. Building an advanced sophisticated model to tackle impersonation-related crimes is essential. This study proposes classification Machine Learning (ML) and Deep Learning (DL) models, utilizing Viola-Jones, Linear Discriminant Analysis (LDA), Mutual Information (MI), and Analysis of Variance (ANOVA) techniques. The two proposed facial classification systems are J48 with LDA feature extraction method as input, and a one-dimen
... Show MoreThe Purpose of this research is a comparison between two types of multivariate GARCH models BEKK and DVECH to forecast using financial time series which are the series of daily Iraqi dinar exchange rate with dollar, the global daily of Oil price with dollar and the global daily of gold price with dollar for the period from 01/01/2014 till 01/01/2016.The estimation, testing and forecasting process has been computed through the program RATS. Three time series have been transferred to the three asset returns to get the Stationarity, some tests were conducted including Ljung- Box, Multivariate Q and Multivariate ARCH to Returns Series and Residuals Series for both models with comparison between the estimation and for
... Show MoreBackground. Bone healing is a complex and dynamic process that represents a well-orchestrated series of biological events of cellular recruitment, proliferation, and differentiation. The use of medicinal plants in bone healing has attracted increasing interest because of their lower side effects. Punica granatum seed oil (PSO) contains high levels of phenolic compounds, promotes osteoblast function, and plays an important role in bone remodeling. A gelatin sponge (Spongostan) is a hemostatic agent that is extensively applied as scaffolds in engineering and as drug carriers in the medical field. This study aimed to evaluate the effectiveness of PSO for bone healing enhancement. Twenty adult male New Zealand rabbits, weighing an avera
... Show More