In this study, a theoretical scenario has been used to calculate the electronic current in sensitizer N3 molecule contact to TiO2 semiconductor for electrons in functional solar cells. It is known to play an important role on the compute the eficiency of solar cell. Some parameters of electronic current such as the transition energy, driving force energy, barrier height coupling overlapping values are determined. Transition energy is a necessary parameter to calculate the electronic current in solar cell with using wide polarity solvents Acetic acid, 2-Methoxyethanol, 1-Butanol, Methyl alcohol, chloroform, N,N-Dimethylacetamide and Ethyl alcohol via the quantum donor-acceptor system. Here, we show the results of transition energy can be varied by varied the polarity of solvents due to dielectric constant and refractive index. However, the transition energy of N3/TiO2 system has slightly increasing with increasing dielectric constant and decrease refractive index. In general, the results of electronic current decreased with increased driving force as results to decrease chemical potential of N3 dye. The N3/ZnO device is shown higher current (3.247 to10.46) × 106 with Acetic acid and reach minimum with Methyl alcohol in range (1.689 to 5.443)× 106 when the driving energy minimum ΔE0 = 0.35 eV. (5.225 to 16.837) × 104 with 1-Butanol and reach minimum in range (0.952 to3.070 ) × 104 with chloroform while for drive energy (0.55 eV) the current decrease and reach maximum (8.528 to27.481) × 102 with Methyl alcoholsolvent and reach minimum(0.176 to 0.569 ) with chloroform solvents. Consequently,the TiO2 contact with N3 is given accept current results in room temperature with Acetic acid solvent in low drive energy and with 1-Butanol and Methyl alcoholsolvents at large drive energy.
Aluminum doped zinc selenide ZnSe/n-Si thin films of (250∓20 nm) thickness with (0.01, 0.02 and 0.03), are depositing on the two type of substrate (glass and n-Si) to manufacture (ZnSe/n-Si) solar cell through using thermal vacuum evaporation procedure. physical and optoelectronic properties were examined for the samples. X-Ray and AFM techniques are using to study the structure properties. The energy band gap of as-deposited ZnSe thin films for changed dopant ratio were ranging from (2.6-2.68 eV). The results of Hall effect show that pure and doping films were (p-type), and the concentration carriers and the carriers mobility increases with increase Al-dopant ratio. The (C-V) have shown that the heterojunction were of abrupt type. In add
... Show MoreSolar energy usage in Iraq is facing many issues; one of those is the accumulation “of the dust on the surface of the solar module which” would highly lower its efficiency. The present work study the effect of dust accumulation” on installing fixed solar modules with different inclined angles 15o, 33o, 45o, 60o. Evaluation of the solar modules performance under different circumstance conditions such as rain, wind and humidity are considered in study of dust effect on solar module performance. The results show that the lowest output average efficiencies of solar modules occurs at 15o horizontally inclined angle are 7.4% , 6.7% , 8.0% , 8.1%, and 8.4% for the cor
... Show MoreIn this research, we studied the effect of concentration carriers on the efficiency of the N749-TiO2 heterogeneous solar cell based on quantum electron transfer theory using a donor-acceptor scenario. The photoelectric properties of the N749-TiO2 interfaces in dye sensitized solar cells DSSCs are calculated using the J-V curves. For the (CH3)3COH solvent, the N749-TiO2 heterogeneous solar cell shows that the concentration carrier together with the strength coupling are the main factors affecting the current density, fill factor and efficiency. The current density and current increase as the concentration increases and the
Globally, buildings use about 40% of energy. Many elements, such as the physical properties of the structure, the efficiency of the cooling and heating systems, the activity of the occupants, and the building’s sustainability, affect the energy consumption of a building. It is really difficult to predict how much energy a building will need. To improve the building’s sustainability and create sustainable energy sources to reduce carbon dioxide emissions from fossil fuel combustion, estimating the building's energy use is necessary. This paper explains the energy consumed in the lecture building of the Al-Khwarizmi College of Engineering, University of Baghdad (UOB), Baghdad, Iraq. The weather data and the building construction informati
... Show MoreQuantum dots of CdSe, CdS and ZnS QDs were prepared by chemical reaction and used to fabricate organic quantum dot hybrid junction device. QD-LEDs were fabricated using ITO/TPD: PMMA/CdSe/Al, ITO/TPD: PMMA/CdS/Al and ITO/TPD: PMMA/ZnS/Al QDs devices which synthesized by phase segregation method. The hybrid white light emitting devices consists, of two-layers deposited successively on the ITO glass substrate; the first layer was of N, N’-bis (3-methylphenyl)-N, N’-bis (phenyl) benzidine (TPD) polymer mixed with polymethyl methacrylate (PMMA) polymers in ratio 1:1, while the second layer was 0.5wt% from each type of the (CdSe, CdS and ZnS) QDs for each device.The optical properties of QDs were characterized by UV-Vis. and photolum
... Show MoreExcess molar volumes of five ternary mixtures of 2- methoxy ethanol(1) +butyl acetate(2)+benzene(3), +toluene(3), +chlorobenzene(3), +bromobenzene(3), and +nitrobenzene(3) have been measured at 303.15K. The excess molar volume exhibited positive deviation over the entire range of composition in the systems 2-methoxy ethanol(1)+ butyl acetate(2)+ benzene(3),+toluene(3) and sigmoid behavior in the case of the remaining systems. Flory's statistical theory have been extended to predict the excess molar volumes of the five ternary mixtures at 303.15 k over a wide range of composition . An excellent agreement has been found between the experimental and theoretical excess molar volumes , both in magnitude and sign .