In this study, a theoretical scenario has been used to calculate the electronic current in sensitizer N3 molecule contact to TiO2 semiconductor for electrons in functional solar cells. It is known to play an important role on the compute the eficiency of solar cell. Some parameters of electronic current such as the transition energy, driving force energy, barrier height coupling overlapping values are determined. Transition energy is a necessary parameter to calculate the electronic current in solar cell with using wide polarity solvents Acetic acid, 2-Methoxyethanol, 1-Butanol, Methyl alcohol, chloroform, N,N-Dimethylacetamide and Ethyl alcohol via the quantum donor-acceptor system. Here, we show the results of transition energy can be varied by varied the polarity of solvents due to dielectric constant and refractive index. However, the transition energy of N3/TiO2 system has slightly increasing with increasing dielectric constant and decrease refractive index. In general, the results of electronic current decreased with increased driving force as results to decrease chemical potential of N3 dye. The N3/ZnO device is shown higher current (3.247 to10.46) × 106 with Acetic acid and reach minimum with Methyl alcohol in range (1.689 to 5.443)× 106 when the driving energy minimum ΔE0 = 0.35 eV. (5.225 to 16.837) × 104 with 1-Butanol and reach minimum in range (0.952 to3.070 ) × 104 with chloroform while for drive energy (0.55 eV) the current decrease and reach maximum (8.528 to27.481) × 102 with Methyl alcoholsolvent and reach minimum(0.176 to 0.569 ) with chloroform solvents. Consequently,the TiO2 contact with N3 is given accept current results in room temperature with Acetic acid solvent in low drive energy and with 1-Butanol and Methyl alcoholsolvents at large drive energy.
In this research, A thin film of Rhodamine B dye and TiO2 Nanoparticles doped in PMMA Polymer has been prepared by a casting method. The sample was spectrum absorption by UV-Vis. The nonlinear optical properties were measured by Z- scan technique using Nd:YAG laser with (1064 nm) wavelength. The nonlinear refractive index (n2) and nonlinear absorption coefficient (β) were estimated for the thin film for different energies of the laser, n2 and β were decreased with increasing intensity of incident laser beam. Also, the type of β was two-photon absorption and n2 negative nonlinear reflective.
The use of legislation related to electronic contracting, through the adoption of the method of enactment of legislation and legislative intervention, and to be careful and cautious in the issuance of legislative texts that do not adversely affect the business activity, which is taking its steps for the first time on the path of electronic commerce in this new world by the new knowledge of the subject theoretically and practically , With the necessary assistance of legal expertise so that legislation does not constitute barriers and obstacles to the development of electronic commerce.
Receipt date:6/3/2021 acceptance date:4/5/2021 Publication date:31/31/2021
This work is licensed under a Creative Commons Attribution 4.0 International License.
The research in the role of variables contact for non-state actors have become more influential in the current of contemporary events, that related with the reality of seeking services and providing all of that in favor of maintaining the social peace, and ensuring its empowerment in order to make peace and stability outcomes as a real fa
... Show MoreIn this work, Pure and Cu: doped titanium dioxide nano-powder was prepared through a solid-state method. the dopant concentration [Cu/TiO2 in atomic percentage (wt%)] is derived from 0 to 7 wt.%. structural properties of the samples performed with XRD revealed all nanopowders are of titanium dioxide having polycrystalline nature. Physical and Morphological studies were conducted using a scanning electronic microscope SEM test instrument to confirm the grain size and texture. The other properties of samples were examined using an optical microscope, Lee's Disc, Shore D hardness instrument, Fourier-transform infrared spectroscopy (FTIR), and Energy-dispersive X-ray spectroscopy (EDX). Results showed that the thermal conductivity
... Show MoreAn experimental study was conducted to determine the performance of a solar electric refrigeration system. The system contained flat photovoltaic solar panel which absorbs the solar energy and convert it to electrical energy, used to run the refrigeration cycle. Two refrigeration cycles with electrical solar panel were used over a period of 12 months, the first one with classical parts known in refrigeration cycle, while the second one introduced heat exchanger which improves the coefficient of performance by saving the consumed energy. The coefficient of performance of these refrigeration cycles with compressor efficiency 85% are 2.102 and 2.57 respectively. The overall efficiency of the two systems are 18.9% and 23.13%.
The heat and mass transfer coefficients of the indirect contact closed circuit cooling tower, ICCCCT, were investigated experimentally. Different experiments were conducted involving the controlling parameters such as air velocity, spray water to air mass flow rate ratio, spray water flow rate, ambient air wet bulb temperature and the provided heat load to investigate their effects on the performance of the ICCCCT. Also the effect of using packing on the performance of the ICCCCT was investigated. It was noticed that these parameters affect the tower performance and the use of packing materials is a good approach to enhance the performance for different operational conditions. Correlations for mass and heat transfer coefficients are pres
... Show MoreThe Dielectric properties of EP/TiO2 and MgO nanocomposite at
a frequency range of (102-106 Hz) were studied. The composite were
prepared with the state volume ratio (0, 0.05, 0.1) for EP/TiO2 and
MgO respectively. The impedance, dielectric constant and dielectric
loss were found decrease with frequency increase.
In this paper, A.C conductivity of micro and nano grain size- TiO2 filled epoxy composites is measured. The dielectric material used is epoxy resin, while micro and nano-sized titanium dioxide (TiO2) of grain size (1.5μm, and 50nm) was used as filler at low filler concentrations by weight (3%, and 5%). Additionally the effect of annealing temperature range (293-373)º K and at a frequency range of 102-106 Hz on the A.C conductivity of the various specimens was studied.
The result of real permittivity for micro and nanocomposite show that the real permittivity increases with decreasing frequency at range of 102-106Hz. The micron-filled material has a higher real relative permittivity than the nano-filled this is true at all the temper