Nanofluids (dispersion of nanoparticles in a base fluid) have been suggested as promising agents in subsurface industries including enhanced oil recovery. Nanoparticles can easily pass through small pore throats in reservoirs formations; however, physicochemical interactions between nanoparticles and between nanoparticles and rocks can cause a significant retention of nanoparticles. This study investigated the transport, attach, and retention of silica nanoparticles in core plugs. The hydrophilic silica nanoparticles were injected into limestone core as nanofluid of different nanoparticles size (5 nm, and 20 nm), concentration (0.005 – 0.1 wt% SiO2), and base fluid salinity (0 – 3 wt% NaCl) at different temperatures (23, and 50 °C). Deposition and transport of nanoparticles were measured via nanoparticle concentration of effluent fluid, and energy distractive spectroscopy (EDS) measurement on the limestone core. It was found that silica nanoparticles dispersed in brine (NaCl) solutions are increasingly retained in limestone core as the solution ionic strength increases. On the other hand, less significant retention was measured when the nanoparticles were dispersed in DI water. The EDS measurements also reported the same trend of increased nanoparticles retention with salinity due to larger aggregates that result from the screening effect of the electrolyte on repulsive forces between nanoparticles. Thus, the observed change in surface wettability from oil to water-wet and the increase in oil production that reported in many core flooding laboratory studies are mainly related to the high adsorption rate of hydrophilic silica nanoparticles on carbonate surfaces.
Two‐dimensional buoyancy‐induced flow and heat transfer inside a square enclosure partially occupied by copper metallic foam subjected to a symmetric side cooling and constant heat flux bottom heating was tested numerically. Finite Element Method was employed to solve the governing partial differential equations of the flow field and the Local Thermal Equilibrium model was used for the energy equation. The system boundaries were defined as lower heated wall by constant heat flux, cooled lateral walls, and insulated top wall. The three parameters elected to conduct the study are heater length (7 ≤
ABSTRACT Porous silicon has been produced in this work by photochemical etching process (PC). The irradiation has been achieved using ordinary light source (150250 W) power and (875 nm) wavelength. The influence of various irradiation times and HF concentration on porosity of PSi material was investigated by depending on gravimetric measurements. The I-V and C-V characteristics for CdS/PSi structure have been investigated in this work too.
Moisture damage is described as a reduction in stiffness and strength durability in asphalt mixtures due to moisture. This study investigated the influence of adding nano silica (NS) to the Asphalt on the moisture susceptibility of hot-mix-asphalt (HMA) mixtures under different aging conditions. NS was mixed with asphalt binder at concentrations of 2%, 4%, and 6% by weight of the binder. To detect the microstructure changes of modified Asphalt and estimate the dispersion of NS within the Asphalt, the field emission scanning electron microscope (FE-SEM) was used. To examine the performance of Asphalt mixed with NS at different aging stages (short-term and long-term aging), asphalt mixture tests such as Marshall stability,
... Show MoreThe technology of subsurface soil water retention (SWRT) uses a polyethylene trough that is fixed under the root zone of the plant. It is a modern technology to increase the values of water use efficiency, plant productivity and saving irrigation water by applying as little irrigation water as possible. This study work aims at improving the crop yield and water use efficiency of a cucumber plant with less applied irrigation water by installing membrane trough below the soil surface. The field experiment was conducted in the Hawr Rajab District of Baghdad Governorate in Winter 2018 for testing various trickle irrigation systems. Two agricultural treatment plots were utilized in a greenhouse for the compa
... Show MoreThe technology of subsurface soil water retention (SWRT) uses a polyethylene trough that is fixed under the root zone of the plant. It is a modern technology to increase the values of water use efficiency, plant productivity and saving irrigation water by applying as little irrigation water as possible. This study work aims at improving the crop yield and water use efficiency of a cucumber plant with less applied irrigation water by installing membrane trough below the soil surface. The field experiment was conducted in the Hawr Rajab District of Baghdad Governorate in Winter 2018 for testing various trickle irrigation systems. Two agricultural treatment plots were utilized in a greenhouse for the comparison. Plot T1 has used a subsurface t
... Show MoreThis research was conducted in order to monitor and measure the dimensions of media policy in satellite channels directed from the point of view of the communicator, and this research is classified among the descriptive studies, as the researcher used the survey method to answer the questions that were formulated in light of the research problem represented by the main question: What are the dimensions of media policy in Directed satellite channels? .
To achieve the objectives of the study, the researcher used the following tools:
The questionnaire, in order to survey the attitudes of communicators about the extent to which the media policy during crises reflects on their professional standards. The research community is represente
Background: Chronic suppurative otitis media (CSOM) is the result of an initial episode of acute otitis media and is characterized by a persistent discharge from the middle ear through a tympanic perforation for at least 2 weeks duration. It is an important cause of preventable hearing loss, particularly in the developing world.Objective: To get an overview on the bacterial ear infection profile in general and to assess the antibiotic resistance of Pseudomonal infection (PS) particularly since it is usually the commonest infection to cause otitis media and the most difficult to treat due to the problem of multi drug resistance..Methods: A cross sectional study was done which included 405 patients of CSOM patients, 196 (48%) case were mal
... Show MoreBackground: Chronic suppurative otitis media (CSOM) is the result of aninitial episode of acute otitis media and is characterized by a persistent discharge from the middle ear through a tympanic perforation for at least 2 weeks duration. It is an important cause of preventable hearing loss, particularly in the developing world.Methods. 1. To get an overview on the bacterial ear infection profile in general 2. To assess the antibiotic resistance of Pseudomonal infection (PS) particularly since it is usually the commonest infection to cause otitis media and the most difficult to treat due to the problem of multi drug resistance... A cross sectional study was done which included 405 patient of CSOM patients196 (48%) case were males ,209 (52
... Show MoreRoller compacted concrete (RCC) is a special type of concrete with zero or even negative slump consistency. In this work, it had aimed to produce an RCC mix suitable for roads paving with minimum cost and better engineering properties so, different RCC mixes had prepared i.e. (M1, M2, M3, and M4) using specified percentages of micro natural silica sand powder (SSP) as partial replacement of (0%, 5%, 10%, and 20%) by weight of sulfate resistant Portland cement. Additionally, M-sand, crushed stone, filler, and water had been used. The results had obtained after 28 days of water curing. The control mix (M1) had satisfied the required