The performance of composite prestressed concrete beam topped with reinforced concrete flange structures in fire depends upon several factors, including the change in properties of the two different materials due to fire exposure and temperature distribution within the composition of the composite members of the structure. The present experimental work included casting of 12 identical simply supported prestressed concrete beams grouped into 3 categories, depending on the strength of the top reinforced concrete deck slab (20, 30, and 40 MPa). They were connected together by using shear connector reinforcements. To simulate the real practical fire disasters, 3 composite prestressed concrete beams from each group were exposed to high temperature flame of 300, 500, and 700°C, and the remaining beams were left without burning as reference specimens. Then, the burned beams were cooled gradually by leaving them at an ambient lab condition, after which the specimens were loaded until failure to study the effect of temperature on the residual beams serviceability, to determine the ultimate load-carrying capacity of each specimen in comparison with unburned reference beam, and to find the limit of the temperature for a full composite section to remain composite. It was found that the exposure to fire temperature increased the camber of composite beam at all periods of the burning and cooling cycle as well as the residual camber, along with reduction in beam stiffness and the modulus of elasticity of concrete in addition to decrease in the load-carrying capacity.
The influence of fiber orientation and water absorption on fatigue crack growth resistance for cold cure acrylic (PMMA) reinforced by chopped and woven -glass-fibers were investigated. A weight of 2 g for chopped fibers and the same weight for woven -glass-fibers (one layer) were used to prepare samples. Some of these samples would storage in dry condition; the others were immersed in water for 15 days. Fatigue test was carried out. The results shows that, for PMMA, the initial bending stress for dry specimen was 3.392 N/cm2 and the number of cycles were 1364, the initial bending stress for wet samples was 4.20 N/cm2, and the number of cycles was 2411. The samples would cut in two pieces because of the cracks would propagated fast during
... Show MoreTo evaluate the bioactivity and the cytocompatibility of experimental Bioglass-reinforced polyethylene-based root-canal filling materials. The thermal properties of the experimental materials were also evaluated using differential scanning calorimetry, while their radiopacity was assessed using a grey-scale value (GSV) aluminium step wedge and a phosphor plate digital system. Bioglass 45S5 (BAG), polyethylene and Strontium oxide (SrO) were used to create tailored composite fibres. The filler distribution within the composites was assessed using SEM, while their bioactivity was evaluated through infrared spectroscopy (FTIR) after storage in simulated body fluid (SBF). The radiopacity of the composite fibres and their thermal properties were
... Show MoreBackground: Laparoscopic cholecystectomy has many difficulties which include port Insertion, Dissectionof the Calot’s Triangle , Grasping of the Gallbladder , Wall thickness, Adhesion and extraction of theGallbladder. Aim of the Study: To predict how difficult cholecystectomy will be from assessing the patientpreoperatively which, in turn, help in decreasing the risks on the patients and preventing post-operativecomplications. Patients and Methods: A prospective study conducted in the department of General Surgeryat Al-Ramadi Teaching Hospital for the period of nine months from 15th of May 2018 till the 15th of February2019. It included 60 patients, all of them were undergone laparoscopic cholecystectomy for Gallstone. Patientswit
... Show MoreThe aim of this investigation is to study the rote of alkaline phosphatase in mammogenesis and lactogenesis. A total of fortyfemalealbino rats were used and divided according to their physiological states into four groups [ten rats each]. From each deeply ether anesthetized rat, the mammary gland was removed, fixed, quenched in liquid nitrogen and sectioned using SLEE cryostat. The sections were employed for routine haematoxylin and eosin stain and alkaline phosphatase demonstration using the calcium–cobalt method. The obvious finding in the mammary glands of pregnant rat was the presence of thick black rings indicating strong alkaline phosphatase activityaround the basal part of the secretory epithelium of the alveoli. In lactating mamma
... Show MorePurpose: Studying the activity of acid phosphatase, which is the marker of lysosomal activity in the mammary glands of rats at different stages of the physiological maturation [virgih, pregnancy, lactation and Post lactation] Methods: Forty, female, albino rats were used in this study. They were divided into four groups according to their physiological states [virgin, pregnancy, lactation and post lactation]. The mammary glands, after suitable fixation and sectioning, were employed for routine haematoxylin and eosin stain and for acid phosphatase demonstration Results: Acid phosphatase activity was weakly diffuse in the secretory tubules of virgin rats, the diffuse and granular activity of this enzyme was increased during pregnancy in the s
... Show MoreBackground: The daily cleaning routine of the silicone maxillofacial prostheses by the patient may cause some alteration in the materials properties. The purpose of the present study was to investigate the effect of different disinfection procedures on some properties of silicon dioxide reinforced Cosmesil M511 HTV maxillofacial silicone. Materials and Methods: One hundred and sixty (160) specimens were prepared by mixing 5% SiO2 nano particles and 0.5% intrinsic cream color into the silicone polymer according to manufacturer's instructions. Specimens were divided into 4 groups according to the performed test (tear strength, surface hardness, surface roughness and color) with 40 specimens each. Each group was further subdivided according to
... Show MoreThe primary objective of root canal therapy is adequate biomechanical preparation of root canal system followed by 3D obturation.in clinics we are encountered with several anatomical variations, which we need to manage efficiently. One of the major factors responsible for failure of root canal therapy is missed canals. Recent technological advances have given the clinician opportunity to identify anatomical variations and treat them to satisfaction.