Finger vein recognition and user identification is a relatively recent biometric recognition technology with a broad variety of applications, and biometric authentication is extensively employed in the information age. As one of the most essential authentication technologies available today, finger vein recognition captures our attention owing to its high level of security, dependability, and track record of performance. Embedded convolutional neural networks are based on the early or intermediate fusing of input. In early fusion, pictures are categorized according to their location in the input space. In this study, we employ a highly optimized network and late fusion rather than early fusion to create a Fusion convolutional neural network that uses two convolutional neural networks (CNNs) in short ways. The technique is based on using two similar CNNs with varying input picture quality, integrating their outputs in a single layer, and employing an optimized CNN design on a proposed Sains University Malaysia (FV-USM) finger vein dataset 5904 images. The final pooling CNN, which is composed of the original picture, an image improved using the contrast limited adaptive histogram (CLAHE) approach and the Median filter, And, using Principal Component Analysis (PCA), we retrieved the features and got an acceptable performance from the FV-USM database, with a recognition rate of 98.53 percent. Our proposed strategy outperformed other strategies described in the literature.
User confidentiality protection is concerning a topic in control and monitoring spaces. In image, user's faces security in concerning with compound information, abused situations, participation on global transmission media and real-world experiences are extremely significant. For minifying the counting needs for vast size of image info and for minifying the size of time needful for the image to be address computationally. consequently, partial encryption user-face is picked. This study focuses on a large technique that is designed to encrypt the user's face slightly. Primarily, dlib is utilizing for user-face detection. Susan is one of the top edge detectors with valuable localization characteristics marked edges, is used to extract
... Show MoreIn this work, a Photonic Crystal Fiber (PCF) sensor based on the Surface Plasmon Resonance (SPR) technology was proposed. A thin layer of gold (Au) was deposited on a D-shaped Photonic Crystal Fiber (PCF), which was coated with plasmonic chemically stable gold material with a thickness of 40nm. The performance parameters like sensitivity including wavelength sensitivity and amplitude sensitivity and resolution were evaluated by simulation using COMSOL software. The proposed sensor was created by using the finite element approach, it is numerically examined. The results show that the surface of D-shaped Photonic Crystal Fiber coated with Au behaves as a sensor to detect the refractive index (IR) of toxic metal ions. The impacts of the str
... Show MoreThe research aims to identify the academic problems of family counseling diploma students at Saudi Universities. In addition, to identify the differences in these problems according to gender, marital status, place of study, academic specialization, and GPA. The sample consisted of (491) students. The researcher has used one questionnaire for academic problems prepared by the researcher. The research revealed the following results: There were academic problems among family counseling diploma students at Saudi Universities, the most problems were related to the systems and administrations of the university, then the field training, the buildings, classrooms and campus facilities, then the academic courses, after that the exams, then
... Show More