Finger vein recognition and user identification is a relatively recent biometric recognition technology with a broad variety of applications, and biometric authentication is extensively employed in the information age. As one of the most essential authentication technologies available today, finger vein recognition captures our attention owing to its high level of security, dependability, and track record of performance. Embedded convolutional neural networks are based on the early or intermediate fusing of input. In early fusion, pictures are categorized according to their location in the input space. In this study, we employ a highly optimized network and late fusion rather than early fusion to create a Fusion convolutional neural network that uses two convolutional neural networks (CNNs) in short ways. The technique is based on using two similar CNNs with varying input picture quality, integrating their outputs in a single layer, and employing an optimized CNN design on a proposed Sains University Malaysia (FV-USM) finger vein dataset 5904 images. The final pooling CNN, which is composed of the original picture, an image improved using the contrast limited adaptive histogram (CLAHE) approach and the Median filter, And, using Principal Component Analysis (PCA), we retrieved the features and got an acceptable performance from the FV-USM database, with a recognition rate of 98.53 percent. Our proposed strategy outperformed other strategies described in the literature.
Experimental measurements of viscosity and thermal conductivity of single layer of graphene . based DI-water nanofluid are performed as a function of concentrations (0.1-1wt%) and temperatures between (5 to 35ºC). The result reveals that the thermal conductivity of GNPs nanofluids was increased with increasing the nanoparticle weight fraction concentration and temperature, while the maximum enhancement was about 22% for concentration of 1 wt.% at
35ºC. These experimental results were compared with some theoretical models and a good agreement between Nan’s model and the experimental results was observed. The viscosity of the graphene nanofluid displays Newtonian and Non-Newtonian behaviors with respect to nanoparticles concen
Big data usually running in large-scale and centralized key management systems. However, the centralized key management systems are increasing the problems such as single point of failure, exchanging a secret key over insecure channels, third-party query, and key escrow problem. To avoid these problems, we propose an improved certificate-based encryption scheme that ensures data confidentiality by combining symmetric and asymmetric cryptography schemes. The combination can be implemented by using the Advanced Encryption Standard (AES) and Elliptic Curve Diffie-Hellman (ECDH). The proposed scheme is an enhanced version of the Certificate-Based Encryption (CBE) scheme and preserves all its advantages. However
... Show MoreNew ligands, N1, N4-bis (benzo[d]thiazol-2- ylcarbamothioyl) succinamide (L1) and N1, N4- bis (benzylcarbamothioyl)succinamide (L2), derived from succinyl chloride and 2-amino benzothiazole or benzylamine, respectively, have been used to prepare a set of transition metal complexes with the general formula [M2(L)Cl4], where L=L1 or L2, M = Mn(II), Ni(II), Cu(II), Cd(II), Co(II), Zn(II) or Hg(II). The synthesized compounds were characterized using various analytical techniques including TGA, 13C NMR, mass spectroscopy, 1H and Fourier-transform infrared (FTIR) spectroscopy, magnetic measurement, molar conductivity, electronic spectrum, (%M, %C, %H, %N) and atomic absorption flame (AAF) analysis. The results showed that (L1, L2) bin
... Show MoreCancer is one of the critical health concerns. Health authorities around the world have devoted great attention to cancer and cancer causing factors to achieve control against the increasing rate of cancer. Carcinogens are the most salient factors that are accused of causing a considerable rate of cancer cases. Scientists, in different fields of knowledge, keep warning people of the imminent attack of carcinogens which are surrounding people in the environment and may launch their attack at any moment. The present paper aims to investigate the linguistic construction of the imminent carcinogen attack in English and Arabic scientific discourse. Such an investigation contributes to enhancing the scientists’ awareness of the linguistic co
... Show MoreLaser is a powerful device that has a wide range of applications in fields ranging from materials science and manufacturing to medicine and fibre optic communications. One remarkable
Detecting and subtracting the Motion objects from backgrounds is one of the most important areas. The development of cameras and their widespread use in most areas of security, surveillance, and others made face this problem. The difficulty of this area is unstable in the classification of the pixels (foreground or background). This paper proposed a suggested background subtraction algorithm based on the histogram. The classification threshold is adaptively calculated according to many tests. The performance of the proposed algorithms was compared with state-of-the-art methods in complex dynamic scenes.
In this study, an improved process was proposed for the synthesis of structure-controlled Cu2O nanoparticles, using a simplified wet chemical method at room temperature. A chemical solution route was established to synthesize Cu2O crystals with various sizes and morphologies. The structure, morphology, and optical properties of Cu2O nanoparticles were analyzed by X-ray diffraction, SEM (scanning electron microscope), and UV-Vis spectroscopy. By adjusting the aqueous mixture solutions of NaOH and NH2OH•HCl, the synthesis of Cu2O crystals with different morphology and size could be realized. Strangely, it was found that the change in the ratio of de-ionized water and NaOH aqueous solution led to the synthesis of Cu2O crystals of differen
... Show More