This work aimed to study the effect of laser surface treatment on the mechanical characteristics and corrosion behaviour of grey cast iron type A159. Many technical applications used conventional surface treatment, but laser surface hardening has recently been used to enhance the surface properties of many alloys. The mechanical characteristics, including microstructure, microhardness, and wear resistance of A159 grey cast iron, were studied, in addition to corrosion behaviour. The experimental laser parameters in this work were 0.9, 1.2, and 1.5 KW power with continuous wave carbon dioxide lasers with scanning speeds of 10 and 12 mm/s were used. The results found that phase-transitional alterations in microstructure were influenced by laser therapy. Also, the microhardness increased with increasing power, with the maximum reaching approximately 950 HV while the base metal has an average of approximately 260 HV. Also, we found the power laser increased corrosion resistance by lowering the corrosion rate (CR) from 21.10 for the untreated sample to 1.02 (m.p.y.), additionally, corrosion protection efficiency (CPE) increased to 95.27 percent.
This study investigates the implementation of Taguchi design in the estimation of minimum corrosion rate of mild-steel in cooling tower that uses saline solution of different concentration. The experiments were set on the basis of Taguchi’s L16 orthogonal array. The runs were carried out under different condition such as inlet concentration of saline solution, temperature, and flowrate. The Signal-to- Noise ratio and ANOVA analysis were used to define the impact of cooling tower working conditions on the corrosion rate. A regression had been modelled and optimized to identify the optimum level for the working parameters that had been founded to be 13%NaCl, 35ᴼC, and 1 l/min. Also a confirmation run to establish the p
... Show MoreThe present study is to investigate the possibility of using wastes in the form of scrap iron (ZVI) and/ or aluminum ZVAI for the detention and immobilization of the chromium ions in simulated wastewater. Different batch equilibrium parameters such as contact time (0-250) min, sorbent dose (2-8 g ZVI/100 mL and 0.2-1 g ZVAI/100 mL), initial pH (3-6), initial pollutant concentration of 50 mg/L, and speed of agitation (0-250) rpm were investigated. Maximum contaminant removal efficiency corresponding to (96 %) at 250 min contact time, 1g ZVAI/ 6g ZVI sorbent mass ratio, pH 5.5, pollutant concentration of 50 mg/L initially, and 250 rpm agitation speed were obtained.
The best isotherm model for the batch single Cr(III) uptake by ZVI
... Show MoreThe prepared nanostructure SiO2 thin films were densified by two techniques (conventional and Diode Pumped Solid State Laser (DPSS) (532 nm). X-ray diffraction (XRD), Field Emission Scanning electron microscopy (FESEM), and Atomic Force Microscope (AFM) technique were used to analyze the samples. XRD results showed that the structure of SiO2 thin films was amorphous for both Oven and Laser densification. FESEM and AFM images revealed that the shape of nano silica is spherical and the particle size is in nano range. The small particle size of SiO2 thin film densified by DPSS Laser was (26 nm) , while the smallest particle size of SiO2 thin film densified by Oven was (111 nm).
In this work laser detection and tracking system (LDTS) is designed and implemented using a fuzzy logic controller (FLC). A 5 mW He-Ne laser system and an array of nine PN photodiodes are used in the detection system. The FLC is simulated using MATLAB package and the result is stored in a lock up table to use it in the real time operation of the system. The results give a good system response in the target detection and tracking in the real time operation.
Background: Polymethyl methacrylate (PMMA) is the most commonly used material in denture fabrication. The material is far from ideal in fulfilling the mechanical requirement. The purpose of this study was to evaluate the effect of addition of 3% wt of treated (silanized) Titanium oxide Nano filler on some physical and mechanical properties of heat cured acrylic denture base material. Materials and methods: 100 specimens were constructed, 50 specimens were prepared from heat cure PMMA without additives (control) and 50 specimens were prepared from heat cure PMMA with the addition of TiO2 Nano fillers. Each group was divided into 5 sub groups according to the test performed which was mixed by probe ultra-sonication machine. Results: A highly
... Show MoreBackground: Imprelon® Biostar foils are new alternative tray material that has become increasingly popular because oftheir several advantages. Also, (Duran®) is another type of Biostar foils which is used in splint therapy. This study assessed some mechanical properties of these two types Biostar sheets in comparison with some types of acrylic resins used for construction of trays and splints. Materials and Methods: A total of 150 specimens were prepared, 30 specimens for each test, 10 for each group material in order to assess some mechanical properties of the Imprelon® Biostar foil (dimension stability, surface roughness and shear bond strength of Imprelon® materialto zinc oxide impression material) and compare them to that of the oth
... Show MoreThere is a real problem when adding micro elements to the soil as a result of fixation, sedimentation, washing or toxicity, and thus economic loss. The plant needs micro elements in very small quantities that do not burn the leaves or cause poisoning to plants, including iron, zinc and boron, as they are essential elements for growth and completing the plant's life cycle, and increase the plant's resistance to diseases and insects, activate enzymes, and form the chlorophyll molecule, in addition to their role in oxidation and reduction processes and vital processes. The use of fertilizers with their modern technology has made the process of activating seeds or foliar nutrition a matter of interest to researchers as a complementary process t
... Show MoreUnused and expired pharmaceutical drugs are a novel type of organic corrosion inhibitor. They are less expensive, more effective, and less harmful than conventional organic corrosion inhibitors. This study investigated the effects of concentration, adsorption mechanism and thermodynamic parameters of enalapril malate (ENAP) as a corrosion inhibitor for carbon steel in a saline solution (3.5 % NaCl). The polarization method was used to determine the corrosion rate and inhibition efficiency. Field emission scanning electron microscopy (FE-SEM) and atomic force spectroscopy (AFM) were used to investigate the surface morphology and topography of carbon steel after immersion in both uninhibited and inhibited media for 24 h. Fourier transform inf
... Show MoreIn this work, pure and Ag-doped nickel oxide (NiO) thin films were deposited on glass substrates with different dopant concentrations (0.1, 0.2, 0.3 and 0.4 wt.%) by pulsed-laser deposition (PLD) technique at room temperature. These films were annealed at temperature of 450 °C. The structural and optical properties of the prepared thin films were studied. It was found that annealing process has lead to increase the transmittance of the deposited films. Also, the transmittance was found to increase with doping concentration of silver in the deposited NiO films. The optical energy gap was decreased from 3.5 to 3.2 eV as the doping concentration was increased to 0.4 %.