Transportability refers to the ease with which people, goods, or services may be transferred. When transportability is high, distance becomes less of a limitation for activities. Transportation networks are frequently represented by a set of locations and a set of links that indicate the connections between those places which is usually called network topology. Hence, each transmission network has a unique topology that distinguishes its structure. The most essential components of such a framework are the network architecture and the connection level. This research aims to demonstrate the efficiency of the road network in the Al-Karrada area which is located in the Baghdad city. The analysis based on a quantitative evaluation using graph theory and some quantitative methods for the reality of the road network in terms of the degree of connectivity, rotation, and density. This can provide the required services smoothly and efficiently for users since it represents the arteries of movement between different regions. By examining the indicators (Beta, Gamma, Alfa, Cyclomatic Number, and Ats (Aggregate Transportation Score)), the research indicated that Al-Karrada municipality road network has poor connectivity and there is a need to enhance the network by constructing new roads to create greater connectivity.
The Jeribe Formation, the Jambour oil field, is the major carbonate reservoir from the tertiary reservoirs of the Jambour field in northern Iraq, including faults. Engineers have difficulty organizing carbonate reserves since they are commonly tight and heterogeneous. This research presents a geological model of the Jeribe reservoir based on its facies and reservoir characterization data (Permeability, Porosity, Water Saturation, and Net to Gross). This research studied four wells. The geological model was constructed with the Petrel 2020.3 software. The structural maps were developed using a structural contour map of the top of the Jeribe Formation. A pillar grid model with horizons and layering was designed for each zone. Followin
... Show MoreDetection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show MoreIn this research project, a tip-tilting angle of a photovoltaic solar cell was developed to increase generated electrical power output. An active, accurate, and simple dual-axis tracking system was designed by using an Arduino Uno microprocessor. The system consisted of two sections: software and apparatus (hardware). It was modified by using a group of light-dependent resistor sensors, and two DC servo motors were utilized to rotate the solar panel to a location with maximum sunlight. These components were arranged in a mechanical configuration with the gearbox. The three locations of the solar cell were chosen according to the tilt angle values, at zero angles, which included an optimal 33-degree angle for the Baghdad location and
... Show MoreIn recent years, there has been a rise in interest in the study of antibiotic occurrence in the aquatic environment due to the negative consequences of prolonged exposure and the potential for bacterial antibiotic resistance. Most antibiotic residues from treated wastewater end up in the aquatic environment as they are not eliminated in facilities that treat wastewater. Antibiotics must be identified in influent and effluent wastewater using reliable analytical techniques for several reasons. Firstly, monitoring antibiotic presence in aquatic environments. Secondly, assessing environmental risks, computing wastewater treatment plant removal efficiencies, and estimating antibiotic consumption. Therefore, this work aims to provide an overview
... Show MoreListeria monocytogenes represents a critical foodborne pathogen causing listeriosis, a severe infection with mortality rates of 20- 30%. This comprehensive review integrates cutting-edge research from 2015-2024 with Iraqi epidemiological data to address significant knowledge gaps in regional surveillance and global comparative analysis. Recent discoveries include five novel Listeria species in 2021, revolutionary whole genome sequencing (WGS) surveillance systems, and advanced understanding of RNA-mediated regulation. Iraqi prevalence data reveals concerning patterns with rates ranging from 3.5% to 93.8% across different sample types, substantially higher than global averages. Critically, Iraqi isolates demonstrate alarming antibiotic resis
... Show MoreAutism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show More