Aim To develop a low-density polyethylene–hydroxyapatite (HA-PE) composite with properties tailored to function as a potential root canal filling material. Methodology Hydroxyapatite and polyethylene mixed with strontium oxide as a radiopacifier were extruded from a single screw extruder fitted with an appropriate die to form fibres. The composition of the composite was optimized with clinical handling and placement in the canal being the prime consideration. The fibres were characterized using infrared spectroscopy (FTIR), and their thermal properties determined using differential scanning calorimetry (DSC). The tensile strength and elastic modulus of the composite fibres and gutta-percha were compared, dry and after 1 month storage in simulated body fluid (SBF), using a universal testing machine. The radiopacity of the fibres was determined using digital radiography. The interaction of the composites with eugenol was evaluated and compared with gutta-percha. Data of the tensile test were submitted to two-way anova and Bonferroni tests (P < 0.05). Results The endothermic peaks obtained from the DSC studies showed that the melting point of the HA/PE composites ranged between 110.5 and 111.2 °C, whereas gutta-percha exhibited a melting point at 52 °C. The tensile strength and elastic modulus of the silanated HA/PE composites were significantly higher than those of gutta-percha (P < 0.0001) under dry conditions and 1 month storage in SBF. The gutta-percha in eugenol showed a significant increase in the polymer molar mass, whereas the silanated HA/PE composites were unchanged. Radiological evaluations demonstrated that silanated HA/PE fibres were sufficiently radiopaque. Conclusion Promising materials for endodontic applications have been developed, offering relevant benefits over the traditional materials in terms of mechanical and chemical properties
One of the artificial lightweight aggregates with a wide range of applications is Lightweight Expanded Clay Aggregate. Clay is utilized in the production of light aggregates. Using leftover clay from significant infrastructure development projects to manufacture lightweight aggregates has a favorable environmental impact. This research examines the expanded clay aggregate production process and the impact of processing parameters on its physical and mechanical qualities. It also looks at secondary components that can be used to improve the qualities of concrete with expanded clay aggregates. The effect of the quantity of expanded clay aggregate on the fresh, hardened, and durability qualities of concrete is also studied.
... Show MoreBackground: The aim of this in vitro study was to evaluate and compare the effect of preheating microleakage among three different filler size composites which include Filtektm Z250 micro hybrid, Z250xt Nano hybrid and nanocomposite Z350xt. in Class II cavity preparation .
Materials and methods: sixty maxillary first premolars were prepared with class II cavities. Samples were divided into three groups according to material used group A (FiltekZ250 micro hybrid). Group B(Z250xt Nano hybrid). Group C (nanocomposite Z350xt)and each group divided into two subgroups of ten teeth according to temperature of composite:
... Show MoreThis paper presents the synthesis of a polypropylene nanocomposite. The nanocomposites were characterized using different techniques: atomic electron microscopy (AFM), surface shape was evaluated by (SEM),(EDS),(XRD) and (FTIR). The study showed that the platinum nanocomposite had a fatal effect on both strains of bacteria used, as well as on the growth of fungi. The compound tested showed antioxidant properties moderate activity was found. The mentioned material were evaluated in normal cell line HdFn (Human Dermal Fibroblasts, neonatal) and breast cancer MCF-7 cancer cell line , by MTT assay for study cytotoxic effects, morphological changes, all experiments were conducted on cell lines by using the
... Show MoreIn this paper, some chalcone derivatives (C1, C2) were synthesized based on the reaction of equal amount of substituted acetophenone and substituted banzaldehyde in basic medium. Oxazine and thiazine derivatives were prepared from the reaction of chalcones (C1-C2) with urea and thiourea respectively in a basic medium. Pyrazole derivatives were prepared based on the reaction of chalcones with hydrazine mono hydrate or phenyl hydrazine in the presence of glacial acetic acid as a catalyst. The new synthesized compounds were identified using various physical techniques like1 H-NMR and FT-IR spectra.
The prostheses sockets use normally composite materials which means that their applications may be related with the human body. Therefore, it was very necessary to improve the mechanical properties of these materials. The prosthetic sockets are subjected to varying stresses in gait cycle scenario which may cause a fatigue damage. Therefore, it is necessary or this work to modify the fatigue behavior of the materials used for manufacturing the prostheses sockets. In this work, different Nano particle materials are used to modify the mechanical properties of the composite materials, and increase the fatigue strength. By using an experimental technique, the effect of using different volu
Polyaromatic hydrocarbons (PAHs) are a group of aromatic compounds that contain at least two rings. These compounds are found naturally in petroleum products and are considered the most prevalent pollutants in the environment. The lack of microorganism capable of degrading some PAHs led to their accumulation in the environment which usually causes major health problems as many of these compounds are known carcinogens. Xanthene is one of the small PAHs which has three rings. Many xanthene derivatives are useful dyes that are used for dyeing wood and cosmetic articles. However, several studies have illustrated that these compounds have toxic and carcinogenic effects. The first step of the bacterial degradation of xanthene is conducted by d
... Show More