This paper introduces a non-conventional approach with multi-dimensional random sampling to solve a cocaine abuse model with statistical probability. The mean Latin hypercube finite difference (MLHFD) method is proposed for the first time via hybrid integration of the classical numerical finite difference (FD) formula with Latin hypercube sampling (LHS) technique to create a random distribution for the model parameters which are dependent on time [Formula: see text]. The LHS technique gives advantage to MLHFD method to produce fast variation of the parameters’ values via number of multidimensional simulations (100, 1000 and 5000). The generated Latin hypercube sample which is random or non-deterministic in nature is further integrated with the FD method to complete one cycle of LHS-FD simulation iteration. This process is repeated until [Formula: see text] final iterations of LHS-FD are obtained. The means of these [Formula: see text] final solutions (MLHFD solutions) are tabulated, graphed and analyzed. The numerical simulation results of MLHFD for the SEIR model are presented side-by-side with deterministic solutions obtained from the classical FD scheme and homotopy analysis method with Pade approximation (HAM-Pade). The present MLHFD results are also compared with the previous non-deterministic statistical estimations from 1995 to 2015. Good agreement between the two is perceived with small errors. MLHFD method can be used to predict future behavior, range and prediction interval for the epidemic model solutions. The expected profiles of the cocaine abuse subpopulations are projected until the year 2045. Both the statistical estimations and the deterministic results of FD and HAM-Pade are found to be within the MLHFD prediction intervals for all the years and for all the subpopulations considered.
The solidification process in a multi-tube latent heat energy system is affected by the natural convection and the arrangement of heat exchanger tubes, which changes the buoyancy effect as well. In the current work, the effect of the arrangement of the tubes in a multi-tube heat exchanger was examined during the solidification process with the focus on the natural convection effects inside the phase change material (PCM). The behavior of the system was numerically analyzed using liquid fraction and energy released, as well as temperature, velocity and streamline profiles for different studied cases. The arrangement of the tubes, considering seven pipes in the symmetrical condition, are assumed at different positions in the system, i
... Show MoreThe study of cohomology groups is one of the most intensive and exciting researches that arises from algebraic topology. Particularly, the dimension of cohomology groups is a highly useful invariant which plays a rigorous role in the geometric classification of associative algebras. This work focuses on the applications of low dimensional cohomology groups. In this regards, the cohomology groups of degree zero and degree one of nilpotent associative algebras in dimension four are described in matrix form.
In this research, the problem of multi- objective modal transport was formulated with mixed constraints to find the optimal solution. The foggy approach of the Multi-objective Transfer Model (MOTP) was applied. There are three objectives to reduce costs to the minimum cost of transportation, administrative cost and cost of the goods. The linear membership function, the Exponential membership function, and the Hyperbolic membership function. Where the proposed model was used in the General Company for the manufacture of grain to reduce the cost of transport to the minimum and to find the best plan to transfer the product according to the restrictions imposed on the model.
Gray-Scale Image Brightness/Contrast Enhancement with Multi-Model
Histogram linear Contrast Stretching (MMHLCS) method
Purpose This study investigated periodontal ligament (PDL) restoration in osseointegrated implants using stem cells. Methods Commercial pure titanium and zirconium oxide (zirconia) were coated with beta-tricalcium phosphate (β-TCP) using a long-pulse Nd:YAG laser (1,064 nm). Isolated bone marrow mesenchymal cells (BMMSCs) from rabbit tibia and femur, isolated PDL stem cells (PDLSCs) from the lower right incisor, and co-cultured BMMSCs and PDLSCs were tested for periostin markers using an immunofluorescent assay. Implants with 3D-engineered tissue were implanted into the lower right central incisors after extraction from rabbits. Forty implants (Ti or zirconia) were subdivided according to the duration of implantation (healing period: 45 o
... Show MoreBig data analysis is essential for modern applications in areas such as healthcare, assistive technology, intelligent transportation, environment and climate monitoring. Traditional algorithms in data mining and machine learning do not scale well with data size. Mining and learning from big data need time and memory efficient techniques, albeit the cost of possible loss in accuracy. We have developed a data aggregation structure to summarize data with large number of instances and data generated from multiple data sources. Data are aggregated at multiple resolutions and resolution provides a trade-off between efficiency and accuracy. The structure is built once, updated incrementally, and serves as a common data input for multiple mining an
... Show MoreA roundabout is a highway engineering concept meant to calm traffic, increase safety, reduce stop-and-go travel, reduce accidents and congestion, and decrease traffic delays. It is circular and facilitates one-way traffic flow around a central point. The first part of this study evaluated the principles and methods used to compare the capacity methods of roundabouts with different traffic conditions and geometric configurations. These methods include gap acceptance, empirical, and simulation software methods. Previous studies mentioned in this research used various methods and other new models developed by several researchers. However, this paper's main aim is to compare different roundabout capacity models for acceptabl
... Show MoreIn this work, the effect of the addition of bright nickel plating and silver carried out by the electroplating method has been studied, on the coating of copper nanoparticles on the copper base metal via the process of thermal evaporation. The improvement of the solar absorber using CuNP in combination with the bright nickel and silver was obtained to be better than copper nanoparticles individually. A bright nickel enhanced the absorbed thermal stability. Also, other optical properties, absorptions, and emissivity slightly decreased from (93% to 87%), while the existence of silver had a slight impact on absorption of about (86.50%). On the other hand, thermal conductivity was evaluated using hot disk analyzer. The results showed a good
... Show More