The maximization of the net present value of the investment in oil field improvements is greatly aided by the optimization of well location, which plays a significant role in the production of oil. However, using of optimization methods in well placement developments is exceedingly difficult since the well placement optimization scenario involves a large number of choice variables, objective functions, and restrictions. In addition, a wide variety of computational approaches, both traditional and unconventional, have been applied in order to maximize the efficiency of well installation operations. This research demonstrates how optimization approaches used in well placement have progressed since the last time they were examined. Following that, the research looked at a variety of different optimization strategies, and it demonstrated the limitations of each strategy as well as the scope of its application in order to achieve a suitable level of accuracy and simulation run time. In conclusion, this study presents an all-encompassing analysis of the well location optimization approaches that are applied in the petroleum engineering area, ranging from traditional methods to contemporary methods that make use of artificial intelligence.
The Ant System Algorithm (ASA) is a member of the ant colony algorithms family in swarm intelligence methods (part of the Artificial Intelligence field), which is based on the behavior of ants seeking a path and a source of food in their colonies. The aim of This algorithm is to search for an optimal solution for Combinational Optimization Problems (COP) for which is extremely difficult to find solution using the classical methods like linear and non-linear programming methods.
The Ant System Algorithm was used in the management of water resources field in Iraq, specifically for Haditha dam which is one of the most important dams in Iraq. The target is to find out an efficient management system for
... Show MoreBox-Wilson experimental design method was employed to optimized lead ions removal efficiency by bulk liquid membrane (BLM) method. The optimization procedure was primarily based on four impartial relevant parameters: pH of feed phase (4-6), pH of stripping phase (9-11), carrier concentration TBP (5-10) %, and initial metal concentration (60-120 ppm). maximum recovery efficiency of lead ions is 83.852% was virtually done following thirty one-of-a-kind experimental runs, as exact through 24-Central Composite Design (CCD). The best values for the aforementioned four parameters, corresponding to the most restoration efficiency were: 5, 10, 7.5% (v/v), and 90 mg/l, respectively. The obtained experimental data had been
... Show MoreIn this work, the photodetection performance of polyvinyl alcohol (PVA) nanofibers and its composite with yttrium oxide (Y2O3) at different concentrations (2.5, 5, 10) wt% are examined deposited on p-type Si with (111) orientation. Electrospinning technique was used to create nanofiber composites. Adding Y2O3 significantly impacts the PVA nanofibers where ultraviolet-visible (UV-Vis) spectroscopy optical absorption energy gap decreases with increased concentration (2.8, 2.6, and 2.3) eV. X-ray diffraction was used to investigate crystal structure, which is cubic structure. The chemical composition study was conducted using Fourier transform infrared spectroscopy (FTIR) spectra, which revealed the stretching vibrations related to the Y-O bon
... Show MoreThe aim of the present study was to develop theophylline (TP) inhalable sustained delivery system by preparing solid lipid microparticles using glyceryl behenate (GB) and poloxamer 188 (PX) as a lipid carrier and a surfactant respectively. The method involves loading TP nanoparticles into the lipid using high shear homogenization – ultrasonication technique followed by lyophilization. The compositional variations and interactions were evaluated using response surface methodology, a Box – Behnken design of experiment (DOE). The DOE constructed using TP (X1), GB (X2) and PX (X3) levels as independent factors. Responses measured were the entrapment efficiency (% EE) (Y1), mass median
... Show MoreBis-anthraquinones with a unique molecular backbone, (+)-2,2’-epicytoskyrin A (epi) and (+)-1,1′-bislunatin (bis), was produced by endophytic fungi Diaporthe sp GNBP-10 associated with Gambir plant (Uncaria gambier). Epi and bis possess robust antimicrobial activity toward various pathogens. This study focus on knowing the optimum condition of epi and bis production from Diaporthe sp GNBP-10. A series of culture media with various nutrient compositions was investigated in epi and bis production. The content of epi and bis was determined by measuring the area under the curve from TLC-densitometric (scanner) experiment. The linear regression analysis was then applied to obtain the results. The optimi
... Show MoreAbstract:
Organizations need today to move towards strategic innovation, which means the analysis of positions, especially the challenges faced by the change in the external environment, which makes it imperative for the organization that you reconsider their strategies and orientations and operations, a so-called re-engineering to meet those challenges and pressures. Now this research dilemma intellectual two-dimensional, yet my account in not Take writings and researchers effect strategic innovation in re-engineering business processes, according to science and to inform the researcher, and after the application represented in the non-application of such resear
... Show MoreThis paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance
... Show More