Target tracking is a significant application of wireless sensor networks (WSNs) in which deployment of self-organizing and energy efficient algorithms is required. The tracking accuracy increases as more sensor nodes are activated around the target but more energy is consumed. Thus, in this study, we focus on limiting the number of sensors by forming an ad-hoc network that operates autonomously. This will reduce the energy consumption and prolong the sensor network lifetime. In this paper, we propose a fully distributed algorithm, an Endocrine inspired Sensor Activation Mechanism for multi target-tracking (ESAM) which reflecting the properties of real life sensor activation system based on the information circulating principle in the endocrine system of the human body. Sensor nodes in our network are secreting different hormones according to certain rules. The hormone level enables the nodes to regulate an efficient sleep and wake up cycle of nodes to reduce the energy consumption. It is evident from the simulation results that the proposed ESAM in autonomous sensor network exhibits a stable performance without the need of commands from a central controller. Moreover, the proposed ESAM generates more efficient and persistent results as compared to other algorithms for tracking an invading object.
The current research seeks to identify mono-multi Vision and its relation to the psychological rebellion and personality traits of university students. To achieve this aim, the researcher has followed all the procedures of the descriptive correlational approach, as it is the closest approach to the objectives of the current research. The researcher has determined his research community for Baghdad University students for the academic year 2019-2020. As for the research sample, it was chosen by the random stratified method with a sample of (500) male and female students. In order to collect data from the research sample, the researcher adopted a mono-multi-dimensional scale
(Othman, 2007), the researcher designed a psychological r
... Show MoreDeep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show MoreText Clustering consists of grouping objects of similar categories. The initial centroids influence operation of the system with the potential to become trapped in local optima. The second issue pertains to the impact of a huge number of features on the determination of optimal initial centroids. The problem of dimensionality may be reduced by feature selection. Therefore, Wind Driven Optimization (WDO) was employed as Feature Selection to reduce the unimportant words from the text. In addition, the current study has integrated a novel clustering optimization technique called the WDO (Wasp Swarm Optimization) to effectively determine the most suitable initial centroids. The result showed the new meta-heuristic which is WDO was employed as t
... Show MoreIn this research, the problem of multi- objective modal transport was formulated with mixed constraints to find the optimal solution. The foggy approach of the Multi-objective Transfer Model (MOTP) was applied. There are three objectives to reduce costs to the minimum cost of transportation, administrative cost and cost of the goods. The linear membership function, the Exponential membership function, and the Hyperbolic membership function. Where the proposed model was used in the General Company for the manufacture of grain to reduce the cost of transport to the minimum and to find the best plan to transfer the product according to the restrictions imposed on the model.
The problem of multi assembly line balancing appears as one of the most prominent and complex type of problem. The research problem of this dissertation is concerned with choosing the suitable method that includes the nature of the processes of the multi assembly type of the sewing line at factory no. (7). The State Company for Leather Manufacturing. The sewing line currently suffers from idle times at work stations which resulted in low production levels that do not meet the production plans. The authors have devised a flexible simulation model which uses the uniform distribution to generate task time for each shoe type produced by the factory. The simulation of the multi assembly line was based on assigni
... Show MoreBackground:Open reduction and internal fixation (ORIF) of using miniplates and screws is the treatment of choice of mandibular fractures. It is important to know both: the region where the bone providesafirm anchorage, andthe topography of the dental apices and inferior alveolar nerve to avoiddamaging them when inserting the screw. The aim of this study is to determine the thickness of buccal cortical plate and that of buccal bone at the parasymphysis and mandibular body, thereby determining the area that provide afirm anchorage and the maximum length of mono-cortical screws that can be safely placed in these regions without injuring the tooth roots or mandibular nerve. Materials and Methods:The sample of the present study was 110 Iraqi sub
... Show More