The concrete need curing for cement hydration that is a chemical reaction in each step require water supply throughout the time period. The traditional concrete cured by external method that prevents the concrete surface dry so that keeping the concrete mixture wet and warm. The internal curing was adopted in normal and high strength concrete such as reactive powder concrete. In present paper, experimental approach is to study the mechanical properties of reactive powder concrete cured internally with thermostone material. The materials that adopted to evaluate and find out the influences of the internal curing on the mechanical properties of reactive powder concrete is focused with different curing methods such as in water, air and combined water and air. Thermostone aggregate are used as partial sand replacement by volume with different percentages to explore the percentage that effects of the concrete mechanical properties. Test results showed that the best partial replacement by thermostone is 5% gave enhancement and increase in compressive strength and flexural resistance strength (modulus of rupture) and concrete density. Highest increasing of compressive strength is 10.07in case of 5% partial replacement at 90 days. In case of cured the specimens up to 90 days, the increase in modulus of rupture is 4.53%
Ag2O (Silver Oxide) is an important p-type (in chasm to most oxides which were n-type), with a high conductivity semiconductor. From the optical absorbance data, the energy gap value of the Ag2O thin films was 1.93 eV, where this value substantially depends on the production method, vacuum evaporation of silver, and optical properties of Ag2O thin films are also affected by the precipitation conditions. The n-type and p-type silicon substrates were used with porous silicon wafers to precipitate ±125 nm, as thick Ag2O thin film by thermal evaporation techniques in vacuum and via rapid thermal oxidation of 400oC and oxidation time 95 s, then characterized by measurement of
... Show MoreTo finalize any construction investment project, it would be necessary to identify the most significant problems and obstacles that lead to project reluctance and stalling. Unexpected events and conflicts may have disrupted these strategies and impacted project development. Due to the high initial investment costs of construction projects, crises can have an immediate impact, resulting in significant financial losses. The 2014 financial crisis was one of the most prominent crises that Iraq faced, which prompted the researcher to identify and evaluate those obstacles through this research and questionnaires using Pareto scientific theory to exclude factors that do not contribute to project lag. It was discovered that 28 o
... Show MoreThe equation of Kepler is used to solve different problems associated with celestial mechanics and the dynamics of the orbit. It is an exact explanation for the movement of any two bodies in space under the effect of gravity. This equation represents the body in space in terms of polar coordinates; thus, it can also specify the time required for the body to complete its period along the orbit around another body. This paper is a review for previously published papers related to solve Kepler’s equation and eccentric anomaly. It aims to collect and assess changed iterative initial values for eccentric anomaly for forty previous years. Those initial values are tested to select the finest one based on the number of iterations, as well as the
... Show MoreElectromyogram (EMG)-based Pattern Recognition (PR) systems for upper-limb prosthesis control provide promising ways to enable an intuitive control of the prostheses with multiple degrees of freedom and fast reaction times. However, the lack of robustness of the PR systems may limit their usability. In this paper, a novel adaptive time windowing framework is proposed to enhance the performance of the PR systems by focusing on their windowing and classification steps. The proposed framework estimates the output probabilities of each class and outputs a movement only if a decision with a probability above a certain threshold is achieved. Otherwise (i.e., all probability values are below the threshold), the window size of the EMG signa
... Show MoreShell model and Hartree-Fock calculations have been adopted to study the elastic and inelastic electron scattering form factors for 25Mg nucleus. The wave functions for this nucleus have been utilized from the shell model using USDA two-body effective interaction for this nucleus with the sd shell model space. On the other hand, the SkXcsb Skyrme parameterization has been used within the Hartree-Fock method to get the single-particle potential which is used to calculate the single-particle matrix elements. The calculated form factors have been compared with available experimental data.
A batch adsorption system was applied to study the adsorption of methylene blue from aqueous solution by Iraqi bentonite and treated bentonite with different amount of zinc oxide (ZnO). The adsorption capacities of methylene blue onto bentonite were evaluated. The equilibrium between liquid and solid phase was described by Langmuir model better than the Freundlich model. Langmuir and Freundlich constants have been determined. The separation factor or equilibrium parameter, RL which is used to predict if an adsorption system is favourable or unfavourable was calculated for all cases.
In this research, Zinc oxide (ZnO)/epoxy nanocomposite was synthesized by simple casting method with 2wt. % ZnO concentration. The aim of this work was to study the effect of pH and composite dosage on the photocatalytic activity of ZnO/ epoxy nanocomposite. Scanning electron microscopy (SEM) technique images proof the homogeneous distribution of ZnO nanoparticles in epoxy. A synthesized nanocomposite samples were characterized by Fourier Transform Infrared spectrometer (FTIR) measurements. Two spectra for epoxy and 2wt.% ZnO/epoxy nanocomposites were similar and there are no new bonds formed from the incorporation of ZnO nanoparticles. Using HCl and NaOH were added to Methylene blue (MB) dye (5ppm) to gat pH values 3 and 8. The degradat
... Show MorePortland Cement is manufactured by adding 3% gypsum to clinker which is produced by grinding, pulverizing, mixing, and then burning a raw mix of silica, and calcium carbonate. Limestone is the main source of carbonates, while clay collected from arable land is the main source of silica. The marl in the Euphrates Formation was studied as an alternative to arable lands. Nine boreholes drilled and penetrated the marl layer in selected locations at the Kufa cement quarry. Forty-one samples of marl from boreholes and four samples of limestone from the closed area were collected. The chemical content of the major oxides and the hardness of the marl layer was very encouraging as a raw material for Portland Cement as they are SiO2 (17.60),
... Show More