A linear engine generator with a compact double-acting free piston mechanism allows for full integration of the combustion engine and generator, which provides an alternative chemical-to-electrical energy converter with a higher volumetric power density for the electrification of automobiles, trains, and ships. This paper aims to analyse the performance of the integrated engine with alternative permanent magnet linear tubular electrical machine topologies using a coupled dynamic model in Siemens Simcenter software. Two types of alternative generator configurations are compared, namely long translator-short stator and short translator-long stator linear machines. The dynamic models of the linear engine and linear generator, validated with lab-scale prototypes, are applied to investigate the influence of alternative topologies of the generator on system performance. The coupled model will facilitate the early design phase and reveal the optimal match of the key parameters of the engine and generator. Then, experimental tests on an integrated compressor cylinder-generator prototype were successfully performed, and it is shown that this concept is feasible and electrical power and compressed working fluid, such as air, can be generated by this prototype.
In this research, Artificial Neural Networks (ANNs) technique was applied in an attempt to predict the water levels and some of the water quality parameters at Tigris River in Wasit Government for five different sites. These predictions are useful in the planning, management, evaluation of the water resources in the area. Spatial data along a river system or area at different locations in a catchment area usually have missing measurements, hence an accurate prediction. model to fill these missing values is essential.
The selected sites for water quality data prediction were Sewera, Numania , Kut u/s, Kut d/s, Garaf observation sites. In these five sites models were built for prediction of the water level and water quality parameters.
The purpose of this paper is to identifying some of the physical, kinetic and electrical capabilities of the working muscles of patients with simple hemiplegic cerebral palsy, preparation of special exercises (rehabilitation and water) accompanied by symmetrical electrical stimulation in the rehabilitation of working muscles for patients with simple hemiplegic cerebral palsy, and identifying the effect of exercises, especially (rehabilitation and water), accompanied by symmetrical electrical stimulation, on some physical, kinetic and electrical capabilities in rehabilitating working muscles for patients with simple hemiplegic cerebral palsy. The researcher used the experimental approach with a one-group design with two pre and post-tests du
... Show MoreAbstract The concept of quantum transition is based on the completion of a succession of time dependent (TD) perturbation theories in Quantum mechanics (QM). The kinetics of "quantum" transition, which are dictated by the coupled motions of a lightweight electrons and very massive nuclei, are inherent by nature in chemical and molecular physics, and the sequence of TD perturbation theory become unique. The first way involved adding an additional assumption into molecule quantum theory in the shape of the Franck-Condon rule, which use the isothermal approach. The author developed the second strategy, which involved injecting chaos to dampen the unique dynamically of the bonding movement of electrons and nuclei in the intermediary state of
... Show MoreThis research focuses on the characteristics of polyvinyl alcohol and starch polymer blends doping with Rhodamine-B. The polymer blends were prepared using the solution cast method, which comprises 1:1(wt. /wt.). The polymer blends of PVA and starch with had different ratios of glycerin 0, 25, 30, 35, and 40 % wt. The ratio of 30% wt of glycerin was found to be the most suitable mechanical properties by strength and elasticity. The polymer blend of 1:1 wt ratios of starch/PVA and 30% wt of glycerin were doped with different ratios of Rhoda mine-B dye 0, 1, 2, 3, 4, 5, and 6% wt and the electrical properties of doping biodegradable blends were studied. The ratio of Rhodamine-B 5% wt to the polymer blends showed hi
... Show MoreThe melting duration in the photovoltaic/phase-change material (PV/PCM) system is a crucial parameter for thermal energy management such that its improvement can realize better energy management in respect to thermal storage capabilities, thermal conditions, and the lifespan of PV modules. An innovative and efficient technique for improving the melting duration is the inclusion of an exterior metal foam layer in the PV/PCM system. For detailed investigations of utilizing different metal foam configurations in terms of their convective heat transfer coefficients, the present paper proposes a newly developed mathematical model for the PV/PCM–metal foam assembly that can readily be implemented with a wide range of operating condition
... Show MoreIn this work, an investigation for the dynamic analysis of thin composite cylindrical and spherical shells is presented. The analytical solution is based upon the higher order shear deformation theory of elastic shells from which the developed equations are derived to deal with orthotropic layers. This will cover the determination of the fundamental natural frequencies and mode shapes for simply supported composites cylindrical and spherical shells.
The analytical results obtained by using the derived equations were confirmed by the finite element technique using the well known Ansys package. The results have shown a good agreement with a maximum percentage of discrepancy, which gives a confidence o
... Show MoreA two-dimensional computational study had been performed regarding aerodynamic forces and pressures affecting a cambered inverted airfoil, CLARK-Y smoothed with ground effects by solving the Reynolds-averaged Navier-Stokes equations, using the commercial software COMSOL Multiphysics 5.0 solver. Turbulence effects are modeled using the Menter shear-stress transport (SST) two-equation model. The negative lift (down-force), drag forces and pressures surface were predicted through the simulation of wings over inverted wings in different parameters namely; varying incidences i.e. angles of attack of the airfoils, varying the ride hide from the ground covering various force regions, two-dimensional cross-section of the inverted front wings to be
... Show MoreObjectives: The study aims to identify the quality of life level in schizophrenic patients and to find out the
relationships between the quality of life and some of personal characteristics for those patients with
schizophrenia.
Methodology: A descriptive correlation analytic design was used by using the assessment technique on sample
of 100 schizophrenic outpatients, who were selected purposively (non-probability sample) during the period
10/ 3/2013 - 1/ 12 /2013. The study was conducted on the schizophrenic patients in an out patient psychiatric
clinics at Ibn-Rushd; and Al-Rashad Psychiatric Teaching Hospital; Baghdad Teaching Hospital, and Al-Kadhimya
Teaching Hospital. Self administrative questionnaire was used
This study was done to investigate the impact of different nanoparticles on diesel fuel characteristics, Iraqi diesel fuel was supplied from al-Dura refinery and was treated to enhance performance by improving its characteristics. Two types of nanoparticles were mixed with Iraqi diesel fuel at various weight fractions of 30, 60, 90, and 120 ppm. The diesel engine was tested and run at a constant speed of 1600 rpm to examine and evaluate the engine's performance and determine emissions. In general, ZnO additives' performance analysis showed they are more efficient for diesel fuel engines than CeO. The performance of engine diesel fuel tests showed that the weight fraction of nanoparticles at 90 and 120 ppm give a similar
... Show More