Expanded use of antibiotics may increase the ability of pathogenic bacteria to develop antimicrobial resistance. Greater attention must be paid to applying more sustainable techniques for treating wastewater contaminated with antibiotics. Semiconductor photocatalytic processes have proven to be the most effective methods for the degradation of antibiotics. Thus, constructing durable and highly active photocatalytic hybrid materials for the photodegradation of antibiotic pollutants is challenging. Herein, FeTiO3/Fe-doped g-C3N4 (FTO/FCN) heterojunctions were designed with different FTO to FCN ratios by matching the energy level of semiconductors, thereby developing effective direct Z-type heterojunctions. The photodegradation behaviors of the FTO/FCN hybrids were systematically explored toward spiramycin (SPY) destruction under visible-irradiation. Using the FTO/FCN (1:2) photocatalyst, the photodegradation efficiency of the bare FTO boosted from 41.6 % to 96.6 %, which was due to suitable band positions of both photocatalysts and thus Z-type heterojunction transfer pathway to prevent the recombination of photo-charge carriers. More importantly, the FTO/FCN hybrid photocatalysts show broad applicability, as they can decompose other organic contaminants including ibuprofen (IBU), ciprofloxacin (CIP), bisphenol A (BPA), and Rhodamine B (RhB). The photodegradation rates of IBU, CIP, BPA and RhB were 90.9 %, 93.4 %, 80.6 %, and 86.2 %, respectively, after 120 min. The trapping analyses were performed and exhibited that the key reactive-species in the SPY photodegradation were •O2 and h+, while •OH and electrons were secondary species in the reaction. The FTO/FCN composite photocatalyst has the properties of high photo-stability and recycling (the SPY photodegradation and mineralization efficiencies decreased only by 4 % and 5.2 %, respectively).
A theoretical and protection study was conducted of the corrosion behavior of carbon steel surface with different concentrations of the derivative (Quinolin-2-one), namely 7-Ethyl-4-methyl-1-[(4-nitro-benzylidene)-amino]-1H-quinolin-2-one (EMNQ2O). Theoretically, Density Functional Theory (DFT) of B3LYP/ 6-311++G/ 2d, 2p level was carried out to calculate the geometrical structure, physical properties and chemical inhibition chemical parameters, with the local reactivity in order to predict both the reactive centers and to know the possible sites of nucleophilic and electrophilic attacks, in vacuum and two solvents (DMSO and H2O), all at the equilibrium geometry. Experimentally, the inhibition efficiencies (%IE) in (3.5% NaCl)
... Show MoreThe current research aims to diagnose the type and level of influence of social media, whose dimensions are represented by (attitudes towards social media marketing, knowledge and use of social media, influence on the Internet and social media, following up on social media) on customer behavior in its dimensions (attracting attention, raising Interest, desire creation, customer response), and the research sought to answer questions related to the research problem by testing the main hypotheses to explore correlations and influence between the two variables, and to achieve research hypothesis tests, the field study was used, as the research sample reached (135) individuals from the director and the assistant director And marketing personnel
... Show MoreThis paper deals with two preys and stage-structured predator model with anti-predator behavior. Sufficient conditions that ensure the appearance of local and Hopf bifurcation of the system have been achieved, and it’s observed that near the free predator, the free second prey and the free first prey equilibrium points there are transcritical or pitchfork and no saddle node. While near the coexistence equilibrium point there is transcritical, pitchfork and saddle node bifurcation. For the Hopf bifurcation near the coexistence equilibrium point have been studied. Further, numerical analysis has been used to validate the main results.
This study was undertaken to diagnose routine settling problems within a third-party oil and gas companies’ Mono-Ethylene Glycol (MEG) regeneration system. Two primary issues were identified including; a) low particle size (<40 μm) resulting in poor settlement within high viscosity MEG solution and b) exposure to hydrocarbon condensate causing modification of particle surface properties through oil-wetting of the particle surface. Analysis of oil-wetted quartz and iron carbonate (FeCO₃) settlement behavior found a greater tendency to remain suspended in the solution and be removed in the rich MEG effluent stream or to strongly float and accumulate at the liquid-vapor interface in comparison to naturally water-wetted particles. As su
... Show MoreIn this study, an experimental investigation had conducted for six high strength laced reinforced concrete one-way slabs to discover the behavior of laced structural members after being exposed to fire flame (high temperature). Self-compacted concrete (SCC) had used to achieve easy casting and high strength concrete. All the adopted specimens were identical in their compressive strength of ( , geometric layout 2000 750 150 mm and reinforcement specifics except those of lacing steel content, three ratios of laced steel reinforcement of (0.0021, 0.0040 and 0.0060) were adopted. Three specimens were fired with a steady state temperature of for two hours duration and then after the specimens were cooled suddenly by spraying water. The
... Show MoreElectrochemical corrosion of hydroxyapatite (HAP) coated performance depends on various parameters like applied potential, time, thickness and sintering temperature. Thus, the optimum parameters required for the development of stable HAP coatings was found by using electrophoretic deposition (EPD) technique. This study discusses the results obtained from open circuit potential-time measurements (OCP-time), potentiodynamic polarisation and immersion tests for all alloy samples done under varying experimental conditions, so that the optimum coating parameters can be established. The ageing studies of the coated samples were carried out by immersing them in Ringer’s solution for a period of 30 days indicates the importance of stable HAP c
... Show MoreThin films of Magnetite have been deposited on Galvanized Steel (G-S) alloy using RF-reactive magnetron sputtering technique and protection efficiency of the corrosion of G-S. A Three-Electrodes Cell was used in saline water (3.5 % NaCl) solution at different temperatures (298, 308, 318 & 328K) using potentiostatic techniques with. Electrochemical Impedance Spectroscopy (EIS) and fitting impedance data via Frequency Response Analysis (FRA) were applied to G-S alloy with Fe3O4 and tested in 3.5 % NaCl solution at 298K.Results taken from Nyquist and Bode plots were analyzed using software provided with the instrument. The results obtained show that the rate of corrosion of G.S alloy increased with increasing the temperatures from 298 t
... Show MoreFiber Reinforced Polymer (FRP) bars are anisotropic in nature and have high tensile strength in the fiber direction. The use of High-Strength Concrete (HSC) allows for better use of the high-strength properties of FRP bars. The mechanical properties of FRP bars can yield to large crack widths and deflections. As a result, the design of concrete elements reinforced with FRP materials is often governed by the Serviceability Limit States (SLS). This study investigates the short-term serviceability behavior of FRP RC I-beams. Eight RC I-beams reinforced with carbon-FRP (CFRP) and four steel RC I-beams, for comparison purposes, were tested under two-point loading.
Deformations on the concrete and crack widths and spacing are measured and
The construction of highly safe and durable buildings that can bear accident damage risks including fire, earthquake, impact, and more, can be considered to be the most important goal in civil engineering technology. An experimental investigation was prepared to study the influence of adding various percentages 0%, 1.0%, and 1.5% of micro steel fiber volume fraction (Vf) to reactive powder concrete (RPC)—whose properties are compressive strength, splitting tensile strength, flexural strength, and absorbed energy—after the exposure to fire flame of various burning temperatures 300, 400, and 500 °C using gradual-, foam-, and sudden-cooling methods. The outcomes of this research proved that the maximum reduction in mechanical prop
... Show More