Expanded use of antibiotics may increase the ability of pathogenic bacteria to develop antimicrobial resistance. Greater attention must be paid to applying more sustainable techniques for treating wastewater contaminated with antibiotics. Semiconductor photocatalytic processes have proven to be the most effective methods for the degradation of antibiotics. Thus, constructing durable and highly active photocatalytic hybrid materials for the photodegradation of antibiotic pollutants is challenging. Herein, FeTiO3/Fe-doped g-C3N4 (FTO/FCN) heterojunctions were designed with different FTO to FCN ratios by matching the energy level of semiconductors, thereby developing effective direct Z-type heterojunctions. The photodegradation behaviors of the FTO/FCN hybrids were systematically explored toward spiramycin (SPY) destruction under visible-irradiation. Using the FTO/FCN (1:2) photocatalyst, the photodegradation efficiency of the bare FTO boosted from 41.6 % to 96.6 %, which was due to suitable band positions of both photocatalysts and thus Z-type heterojunction transfer pathway to prevent the recombination of photo-charge carriers. More importantly, the FTO/FCN hybrid photocatalysts show broad applicability, as they can decompose other organic contaminants including ibuprofen (IBU), ciprofloxacin (CIP), bisphenol A (BPA), and Rhodamine B (RhB). The photodegradation rates of IBU, CIP, BPA and RhB were 90.9 %, 93.4 %, 80.6 %, and 86.2 %, respectively, after 120 min. The trapping analyses were performed and exhibited that the key reactive-species in the SPY photodegradation were •O2 and h+, while •OH and electrons were secondary species in the reaction. The FTO/FCN composite photocatalyst has the properties of high photo-stability and recycling (the SPY photodegradation and mineralization efficiencies decreased only by 4 % and 5.2 %, respectively).
Solutions of dyes Rhodamine 6G (Rh6G) and Coumarin480(C480) were prepared at five concentrations (1x10-3, 5x10-4, 1x10-4, 5x10-5 and1x10-5) mol/l, the mixing was stirred to obtain on a homogenous solution, the(poly methyl-methacrylate) (PMMA) was solved by chloroform solvent with certain ratio, afterward (PMMA+Rh6G) and (PMMA+C480) thin films were prepared by casting method on glass block which has substrate with dimensions (7.5 x2.5)cm2, the prepared samples were left in dark place at room temperature for 24 hours to obtain uniform and homogenous thin films. UV-VIS absorption spectra, transmission spectra and fluorescence spectra were done to measure linear refractive index and linear absorption coefficient. The nonlinear optical proper
... Show MoreIn this study, gamma ray transmission method have been used to determine the total porosity in four samples: pure Alumina ( Al2O3 ), Al2O3 + (0.2wt%)MgO , Al2O3 + (0.6wt% )Y2O3 and Al2O3+ (8wt% ) ZrO2 .
The experimental setup for the gamma ray transmission consist of 137Cs gamma source ( 662 KeV ), a NaI (Tl) scintillation detector measured the attenuation of strongly collimated gamma beam through alumina samples.
The porosity obtained by the gamma ray transmission method were compare
... Show MoreThe influence of Cr3+ doping on the ground state properties of SrTiO 3 perovskite was evaluated using GGA-PBE approximation. Computational modeling results infered an agreement with the previously published literature. The modification of electronic structure and optical properties due to Cr3+ introducing into SrTiO 3 were investigated. Structural parameters assumed that Cr3+ doping alters the electronic structures of SrTiO 3 by shifting the conduction band through lower energies for the Sr and Ti sites. Besides, results showed that the band gap was reduced by approximately 50% when presenting one Cr3+ atom into the SrTiO 3 system and particularly positioned at Sr sites. Interestingly, substituting Ti site by Cr3+ led to eliminating the ban
... Show MoreThis contribution investigates structural, electronic, and optical properties of cubic barium titanate (BaTiO3) perovskites using first-principles calculations of density functional theory (DFT). Generalized gradient approximations (GGA) alongside with PW91 functional have been implemented for the exchange–correlation potential. The obtained results display that BaTiO3 exhibits a band gap of 3.21 eV which agrees well with the previously experimental and theoretical literature. Interestingly, our results explore that when replacing Pd atom with Ba and Ti atoms at 0.125 content a clear decrease in the electronic band gap of 1.052 and 1.090 eV located within the visible range of electromagnetic wavelengths (EMW). Optical parameters such as a
... Show MoreA robust video-bitrate adaptive scheme at client-aspect plays a significant role in keeping a good quality of video streaming technology experience. Video quality affects the amount of time the video has turned off playing due to the unfilled buffer state. Therefore to maintain a video streaming continuously with smooth bandwidth fluctuation, a video buffer structure based on adapting the video bitrate is considered in this work. Initially, the video buffer structure is formulated as an optimal control-theoretic problem that combines both video bitrate and video buffer feedback signals. While protecting the video buffer occupancy from exceeding the limited operating level can provide continuous video str
... Show MoreThis paper presents a study of a syndrome coding scheme for different binary linear error correcting codes that refer to the code families such as BCH, BKLC, Golay, and Hamming. The study is implemented on Wyner’s wiretap channel model when the main channel is error-free and the eavesdropper channel is a binary symmetric channel with crossover error probability (0 < Pe ≤ 0.5) to show the security performance of error correcting codes while used in the single-staged syndrome coding scheme in terms of equivocation rate. Generally, these codes are not designed for secure information transmission, and they have low equivocation rates when they are used in the syndrome coding scheme. Therefore, to improve the transmiss
... Show MoreThe load shedding scheme has been extensively implemented as a fast solution for unbalance conditions. Therefore, it's crucial to investigate supply-demand balancing in order to protect the network from collapsing and to sustain stability as possible, however its implementation is mostly undesirable. One of the solutions to minimize the amount of load shedding is the integration renewable energy resources, such as wind power, in the electric power generation could contribute significantly to minimizing power cuts as it is ability to positively improving the stability of the electric grid. In this paper propose a method for shedding the load base on the priority demands with incorporating the wind po
... Show More
The implementation of technology in the provision of public services and communication to citizens, which is commonly referred to as e-government, has brought multitude of benefits, including enhanced efficiency, accessibility, and transparency. Nevertheless, this approach also presents particular security concerns, such as cyber threats, data breaches, and access control. One technology that can aid in mitigating the effects of security vulnerabilities within e-government is permissioned blockchain. This work examines the performance of the hyperledger fabric private blockchain under high transaction loads by analyzing two scenarios that involve six organizations as case studies. Several parameters, such as transaction send ra
... Show More