An impressed current cathodic protection system (ICCP) requires measurements of extremely low-level quantities of its electrical characteristics. The current experimental work utilized the Adafruit INA219 sensor module for acquiring the values for voltage, current, and power of a default load, which consumes quite low power and simulates an ICCP system. The main problem is the adaptation of the INA219 sensor to the LabVIEW environment due to the absence of the library of this sensor. This work is devoted to the adaptation of the Adafruit INA219 sensor module in the LabVIEW environment through creating, developing, and successfully testing a Sub VI to be ready for employment in an ICCP system. The sensor output was monitored with an Arduino Uno microcontroller and the LabVIEW Linx firmware toolkit. Pulse Width Modulation (PWM) technique, which ranges from 0% to 100%, was applied by the Arduino to supply the l298N voltage driver in order to regulate the voltage input to the load. A moving average filter was employed to measure the ripple voltage averaging, and a median filter was utilized to stabilize the readings. A passive low-pass filter circuit smoothed the PWM voltage before supplying the load. The results from the MATLAB-Simulink environment showed a cut-off frequency of 2.33 Hz, ripple voltage peak to peak was 41.1 mV and a settling time of 0.157 seconds. The calibrated results of the INA219 module sensor showed an absolute voltage inaccuracy of around 2.3% at full scale. In addition, an absolute error in the current of 2.2% at 25 mA shows a gradual increase as the current increases to 7% at 43 mA, while the highest absolute error for the full scale of power was at 5.8%. The obtained measurements were highly precise, and the values of the coefficient of variation were 0.36 %, 0.28% and 0.17% for the voltage, current, and power, respectively.
A low-cost, RGB LED-based visible-light spectrophotometer was designed to measure dyes concentration. Dyes are widely used as indicators or coloring agents in different applications and knowing their concentration is an essential part for many studies. The proposed spectrophotometer provides many functionalities that clones the traditional expensive spectrophotometers for a budged price under $50. It was aimed to provide a versatile tool for instructors and educators to teach their students the fundamental concepts behind spectrophotometry. Malachite green, methyl red, and methyl orange dyes were chosen to be good samples to show the integrity of the proposed spectrophotometer in terms of accuracy, repeatability, and sensitivity as
... Show MoreThe measurement data of the raw water quality of Tigris River were statistically analyzed to measure the salinity value in relation to the selected raw water quality parameters. The analyzed data were collected from five water treatment plants (WTPs) assembled alongside of the Tigris River in Baghdad: Al-Karkh, Al-Karama, Al-Qadisiya, Al-Dora, and Al-Wihda for the period from 2015 to 2021. The selected parameters are total dissolved solid (TDS), electrical conductivity (EC), pH and temperature. The main objective of this research is to predicate a mathematical model using SPSS software to calculate the value of salinity along the river, in addition, the effect of electrical conductivi
abstract
the research discussed a stage of strategic management. The strategic of the evaluation of the proposed strategy through feedback is to ensure that it is implemented with the least possible variation. The research aims at evaluation a proposed strategy for the Ministry of Planning for the years 2018-2022 in line with the orientations of the state, taking into account the surrounding environmental conditions. It relies on scientific bases and steps to formulate the strategy The extent of the strategy suitability was tested through a set of statistical means and its objectivity was verified through a survey of a number of specialized experts who were selected in accordance with the principle
... Show MoreThe proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue
... Show MorePhotonic crystal fiber interferometers are widely used for sensing applications. In this work, solid core-Photonic crystal fiber based on Mach-Zehnder modal interferometer for sensing refractive index was presented. The general structure of sensor applied by splicing short lengths of PCF in both sides with conventional single mode fiber (SMF-28). To apply modal interferometer theory; collapsing technique based on fusion splicing used to excite higher order modes (LP01 and LP11). Laser diode (1550 nm) has been used as a pump light source. Where a high sensitive optical spectrum analyzer (OSA) was used to monitor and record the transmitted. The experimental work shows that the interference spectrum of Photonic crystal fiber interferometer
... Show MoreThe advancement of digital technology has increased the deployment of wireless sensor networks (WSNs) in our daily life. However, locating sensor nodes is a challenging task in WSNs. Sensing data without an accurate location is worthless, especially in critical applications. The pioneering technique in range-free localization schemes is a sequential Monte Carlo (SMC) method, which utilizes network connectivity to estimate sensor location without additional hardware. This study presents a comprehensive survey of state-of-the-art SMC localization schemes. We present the schemes as a thematic taxonomy of localization operation in SMC. Moreover, the critical characteristics of each existing scheme are analyzed to identify its advantages
... Show MoreWe demonstrate that the selective hydrogenation of acetylene depends on energy profile of the partial and full hydrogenation routes and the thermodynamic stability of adsorbed C2H2 in comparison to C2H4.
The mechanism of the electronic flow rate at Al-TiO2 interfaces system has been studied using the postulate of electronic quantum theory. The different structural of two materials lead to suggestion the continuum energy level for Al metal and TiO2 semiconductor. The electronic flow rate at the Al-TiO2 complex has affected by transition energy, coupling strength and contact at the interface of two materials. The flow charge rate at Al-TiO2 is increased by increasing coupling strength and decreasing transition energy.
Photodetector based on Rutile and Anatase TiO2 nanostructures/n-Si Heterojunction