Accurate prediction of river water quality parameters is essential for environmental protection and sustainable agricultural resource management. This study presents a novel framework for estimating potential salinity in river water in arid and semi‐arid regions by integrating a kernel extreme learning machine (KELM) with a boosted salp swarm algorithm based on differential evolution (KELM‐BSSADE). A dataset of 336 samples, including bicarbonate, calcium, pH, total dissolved solids and sodium adsorption ratio, was collected from the Idenak station in Iran and was used for the modelling. Results demonstrated that KELM‐BSSADE outperformed models such as deep random vector functional link (dRVFL), general regression neural network (GRNN), multivariate adaptive regression spline (MARS), online sequential extreme learning machine (OSELM) and extreme gradient boosting decision tree (XGBoost) when compared with observed river salinity data. Also, the KELM‐BSSADE model effectively identified optimal inputs through the Boruta‐XGBoost (B‐XGB) feature selection method. Four metaheuristic‐based KELM models were developed, utilizing grey wolf optimizer, whale optimization, slime mould algorithm and equilibrium optimizer, further illustrating the capability of KELM‐BSSADE in estimating potential salinity in river water. By accurately estimating potential salinity, KELM‐BSSADE can assist in optimizing irrigation practices, ensuring that agricultural demands are met while minimizing the risk of salinity‐related crop damage.
The study aims to build a water quality index that fits the Iraqi aquatic systems and reflects the environmental reality of Iraqi water. The developed Iraqi Water Quality Index (IQWQI) includes physical and chemical components. To build the IQWQI, Delphi method was used to communicate with local and global experts in water quality indices for their opinion regarding the best and most important parameter we can use in building the index and the established weight of each parameter. From the data obtained in this study, 70% were used for building the model and 30% for evaluating the model. Multiple scenarios were applied to the model inputs to study the effects of increasing parameters. The model was built 4 by 4 until it reached 17 parame
... Show MoreThis work aimed to design, construct and operate a new laboratory scale water filtration system. This system was used to examine the efficiency of two ceramic filter discs as a medium for water filtration. These filters were made from two different ceramic mixtures of local red clay, sawdust, and water. The filtration system was designed with two rotating interfered modules of these filters. Rotating these modules generates shear force between water and the surfaces of filter discs of the filtration modules that works to reduce thickness of layer of rejected materials on the filters surfaces. Each module consists of seven filtration units and each unit consists of two ceramic filter discs. The average measured hy
... Show MoreThis study examined the adsorption behavior of anionic dye (orange G) from aqueous solution onto the raw and activated a mixture of illite, kaolinite and chlorite clays from area of Zorbatiya (east of Iraq).The chemical treatment involved alkali and acid activation. The alkali activation obtained by treated the raw clay (RC) with 5M NaOH (ACSO) and the acid activation founded by treated it with 0.25M HCl (ACH) and 0.25M (ACS). The thermal treatment carried out by calcination the produce activated clay at 750oC for acid activation and 105oC for alkali activation. Batch
... Show MoreBotnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet
... Show MoreAbstract
Electrical magnate was designed and constructed, the optimum Magnetic flux and the effect of time on the physical properties of the alkaline (magnetic water) produced from the bottled drinking water [the total dissolved solids (TDS) or the electrical conductivity, and pH] were studied, to simulate ZamZam water in Mekka Saudi Arabia. Also, the efficiency of magnetic field from this designed electrical magnate in decreasing the TDS of sea water (of 1500 ppm NaCl Content), to convert it to water suitable for irrigation (TDS<1000 ppm) was investigated in this work.The results show that the magnetic flux from our designed electrical magnate in the range of (0.013- 0.08) Tesla and 30 minut
... Show MoreIt is well known that drilling fluid is a key parameter for optimizing drilling operations, cleaning the hole, and managing the rig hydraulics and margins of surge and swab pressures. Although the experimental works represent valid and reliable results, they are expensive and time consuming. In contrast, continuous and regular determination of the rheological fluid properties can perform its essential functions during good construction. The aim of this study is to develop empirical models to estimate the drilling mud rheological properties of water-based fluids with less need for lab measurements. This study provides two predictive techniques, multiple regression analysis and artificial neural networks, to determine the rheological
... Show MoreMedicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea
... Show MoreTwo field experimسents were conducted in one of the fields of the Agriculture Division of Ain Al-Tamr /Holy Karbala Governorate at two sites of different textures during the agricultural season 2020/2021. The first site has sandy loam texture (gypsum soils). The second site has loamy sand texture (calcareous soils). The factors of the study included: The first factor included two types of soil, gypsum and calcareous soil. The second factor is the tillage systems (no-tillage, spring spike harrows, disc harrows, and mold board plow). The experiment was designed in the two study sites according to the RCBD with three replications. The Valley type center pivot irrigation system was evaluated before planting, three speeds, 30, 50 and 100% of th
... Show More