Background Obstructing dentinal tubules is a valuable approach for managing dentin hypersensitivity. Although various agents promote dentin remineralization, direct comparisons between theobromine, bioactive glass (BAG), and nano-hydroxyapatite (Nano-HAP) under simulated oral conditions remain limited. To fill this gap, this in vitro study aimed to evaluate and compare the effectiveness of these three treatments on exposed cervical dentin. The assessment focused on their chemical, morphological, and mechanical effects on dentin. Materials and methods Forty-eight human dentin slabs were obtained from the cervical portions of twelve sound premolar teeth. Baseline Raman spectroscopy and VMH tests were done to exclude outliers. All specimens were treated with 6 % citric acid (pH 2.0) for 2 min to remove the smear layer. They randomly assigned to four groups (n = 12): artificial saliva (AS), theobromine, BAG, and Nano-HAP. Evaluations were conducted using Raman spectroscopy (phosphate peak intensity at 960cm−1), Vickers microhardness testing (VMH), and morphological assessment under scanning electron microscopy (SEM). Results Theobromine, BAG, and nano-HAP groups demonstrated a statistically significant increase in Raman phosphate peak intensity (960cm−1) and Vickers microhardness values (p < 0.05), indicating surface remineralization. In contrast, the artificial saliva group exhibited a significant decrease in phosphate peak intensity and microhardness values (p < 0.05). Conclusion All tested agents significantly enhanced the Raman phosphate peaks and microhardness values compared to the control. Nano-HAP showed the highest potential for promoting the remineralization of exposed dentin surfaces. Within the study's limitations, it can be concluded that theobromine, BAG, and nano-HAP are effective in occluding dentinal tubules.
In this work, effects of using different evaporative cooling pads (ECPs) on the energetic and exergetic efficiency of a direct evaporative air cooler (DEAC) have been theoretically and experimentally investigated. Three types of ECPs were used, i.e., honeycomb cellulose cooler pad (HCCP), shading-cloth cooler pad (SCCP), and aspen wood wool cooler pad (AWWCP). For SCCP and AWWCP, a 3-cm pad thickness was used, while for the HCCP, three different values of pad thickness were used, i.e., 3, 5, and 7 cm. Tests were carried out using air velocities of 8, 14, and 19 m/s, measured at the DEAC outlet. Engineering equation solver (EES) used for performing the required calculations of the various parameters affecting the thermal performance of the D
... Show MoreHydrocarbon production might cause changes in dynamic reservoir properties. Thus the consideration of the mechanical stability of a formation under different conditions of drilling or production is a very important issue, and basic mechanical properties of the formation should be determined.
There is considerable evidence, gathered from laboratory measurements in the field of Rock Mechanics, showing a good correlation between intrinsic rock strength and the dynamic elastic constant determined from sonic-velocity and density measurements.
The values of the mechanical properties determined from log data, such as the dynamic elastic constants derived from the measurement of the elastic wave velocities in the material, should be more a
Hydrocarbon production might cause changes in dynamic reservoir properties. Thus the consideration of the mechanical stability of a formation under different conditions of drilling or production is a very important issue, and basic mechanical properties of the formation should be determined. There is considerable evidence, gathered from laboratory measurements in the field of Rock Mechanics, showing a good correlation between intrinsic rock strength and the dynamic elastic constant determined from sonic-velocity and density measurements. The values of the mechanical properties determined from log data, such as the dynamic elastic constants derived from the measurement of the elastic wave velocities in the material, should be more accurate t
... Show MoreThis study was done to compare the morphometric parameters of placentas in well controlled patients with preeclampsia, diabetes, and preeclampsia-diabetes with that of normal uncomplicated placentas. Patients & Methods: A total of Twenty four placentas were freshly collected. Six placentas for control group and eighteen placentas for complicated group (preeclamptic-diabetic and preeclamptic--diabetic subgroups). The placentas were grossly examined (shape, number of cotyledons, weight, and thickness). After suitable fixation, tissue processing and sectioning, the sections were stained by hematoxylin and eosin to study the general morphology and morphometry of the following parameters: number of terminal villi, number of syncytial knots, numb
... Show MoreThe aim of this research is to develop mechanical properties of a new aluminium-lithium-copper alloy. This alloy prepared under control atmosphere by casting in a permanent metal mould. The microstructure was examined and mechanical properties were tested before and after heat treatment to study the influence of heat treatment on its mechanical properties including; modulus of elasticity, tensile strength, impact, and fatigue. The results showed that the modulus of elasticity of the prepared alloy is higher than standard alloy about 2%. While the alloy that heat treated for 6 h and cooled in water, then showed a higher ultimate tensile stress comparing with as-cast alloy. The homogenous heat treatment gives best fatigue
... Show MoreThe research aims to investigate the effects of GMAW or MIG welding process on the mechanical properties of dissimilar aluminum alloys 2024-T351 and AA 6061- T651. A series of experimental techniques have been conducted to evaluate mechanical properties of the alloys, by carrying out hardness, tensile and bending tests for welded and un-welded specimens.
Metal inert gas (MIG) has been carried out on sheet metal using ER- 4043(AlSi5) as a filler metal and argon as shielded gas. The welded joints were tested by X-ray radiography and Faulty pieces were excluded.
Welding joints without defects are subjected to heat treatment including heating the joints in furnace to 170 °C for half an hour then air cooling to rel
... Show MoreOverlapped have been prepared from epoxy resin material added to carbon Nanotube and percentages weight (0.1, 0.05, 0.01) % Studied the mechanical properties of the composite (bending, tensile an d hardness) has been found that the Flexural and tensile modulus of the composites were higher than the pure epoxy resin this may be due to the high mechanical strength of carbon nano tube (CNT). The hardness of the epoxy carbon Nanotube composites increased and the reason is due to increased overlap and stacking between the additives and material basis, which reduces the movement of polymer molecules leading to increased resistance to scratching material and cutting, will become more resistance to plastic deformation.
Mortar of ordinary Portland cement was blended with cockles shell
powder at different weight ratios to investigate the effect of powder
admixture on their strength and thermal conductivity. Results showed
that addition of cockles shell powder at 50% of mortar weight
improves hardness and compressive strength notably and reduces the
thermal conductivity of the end product. Results suggest the
possibility to incorporate cockles shell powders as constituents in
cement mortars for construction and plastering applications.
The dental amalgam of radioactive materials in the restoration of teeth because of its readily adaptable to existing materials in the oral cavity in addition to mechanical properties such as hardness mechanical resistance Alndgat and others in this study were prepared Almlagm used Guy dental restoration of silver alloy tin plus some elements to improve the characteristicsmechanical such as copper, zinc or indium in addition to mercury