Land Use / Land Cover (LULC) classification is considered one of the basic tasks that decision makers and map makers rely on to evaluate the infrastructure, using different types of satellite data, despite the large spectral difference or overlap in the spectra in the same land cover in addition to the problem of aberration and the degree of inclination of the images that may be negatively affect rating performance. The main objective of this study is to develop a working method for classifying the land cover using high-resolution satellite images using object based method. Maximum likelihood pixel based supervised as well as object approaches were examined on QuickBird satellite image in Karbala, Iraq. This study illustrated that
... Show MoreThe research aims to test the effect of the behavioral factors (intangible) represented by an explanatory variable represented by organizational silence and a responsive variable of quality of Function life. The problem was the negative effects of the organizational silence on the morale of the employees and consequently their performance and the quality of function life. To collect the data and information needed to measure the two variables of research conducted in the health center / Sulaikh by taking a sample of (40) employees to test the hypotheses of research through the survey of their views, using statistical tools non parametric using the program. The most important recommendations were the establishment of training workshops fo
... Show More. In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction a
... Show MoreHe mentioned in this article the main types of corruption, which are political, moral, financial and administrative. Others may add other types of corruption, such as religious, scientific, media, informational and statistical corruption. At the global level, the focus is largely on financial corruption, although other types of corruption are no less bad than it. Financial corruption can be defined as all financial deviations in violation of general laws or the provisions of regulations, legislation, and procedures regulating the work of the state, private institutions and individuals and applied in state institutions and the private sector in general and inconsistent with the controls and instructions of financial control.
In th
... Show MoreBackground:Oriental sore occurs mostly in the
mediteranian region , North Africa ,and the Middle East .
Rodents are the main reservoir for the parasite . The wet
type caused by L. major is rural and the dry type caused by
L. tropica is urban and humans are presumably the only
reservoir. Sand fly vectors are involved in all forms.
Objectives: This study aimed to show the most
important bacterial infections concomitant with cutaneous
leishmaniasis .
Methods; The study was performed on 75 patients (ages
1-50 years ) from both sexes were attending Skin Diseases
Department of Ramadi General Hospital during the period
extended from January to June 2000. These patients were
clinically diagnosed as patients
Transactions on Engineering and Sciences
In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction acc
... Show MoreBackground: Neudesin is a peptide secreted in brain and adipose tissues that has neural and metabolic functions. Its role as regulator of energy expenditure leads to assumption that its level may be regulated depending on thyroid gland pathology. Objective: This study aimed to investigate serum neudesin levels in patients with thyroidism and to evaluate1 any possible relationship between plasma neudesin levels and thyroid hormone levels. Methods: The study included 100 women with newly diagnosed thyroidisim were subdivided into two groups: hyperthyroidism group (50 female patients with age ranged from 18 to 60 years) and hypothyroidism group (50 female patients with age ranged from 18 to 75 years). A control group (30 healthy females with a
... Show MoreIn this paper we reported the microfabrication of three-dimensional structures using two-photon polymerization (2PP) in a mixture of MEH-PPV and an acrylic resin. Femtosecond laser operating at 800nm was employed for the two-photon polymerization processes. As a first step in this project we obtained the better composition in order to fabricate microstructers of MEH-PPV in the resin via two-photon polymerzation. Acknowledgement:This research is support by Mazur Group, Harvrad Universirt.
In Automatic Speech Recognition (ASR) the non-linear data projection provided by a one hidden layer Multilayer Perceptron (MLP), trained to recognize phonemes, and has previous experiments to provide feature enhancement substantially increased ASR performance, especially in noise. Previous attempts to apply an analogous approach to speaker identification have not succeeded in improving performance, except by combining MLP processed features with other features. We present test results for the TIMIT database which show that the advantage of MLP preprocessing for open set speaker identification increases with the number of speakers used to train the MLP and that improved identification is obtained as this number increases beyond sixty.
... Show More