The automatic estimation of speaker characteristics, such as height, age, and gender, has various applications in forensics, surveillance, customer service, and many human-robot interaction applications. These applications are often required to produce a response promptly. This work proposes a novel approach to speaker profiling by combining filter bank initializations, such as continuous wavelets and gammatone filter banks, with one-dimensional (1D) convolutional neural networks (CNN) and residual blocks. The proposed end-to-end model goes from the raw waveform to an estimated height, age, and gender of the speaker by learning speaker representation directly from the audio signal without relying on handcrafted and pre-computed acoustic features. The conducted experiments on the TIMIT dataset show that the proposed approach outperforms many previous studies on speaker profiling with a mean absolute error (MAE) of 5.18 and 4.91 cm in height estimation and MAE of 5.36 and 6.07 years in age estimation for males and females, respectively, and achieving an accuracy of 99.98% in gender prediction.
A theoretical study was done in this work for Fatigue , Fatigue Crack Growth (FCG) and stress factor intensity range for steel . It also includes Generalized Paris Equation and the fulfillment of his equation which promises that there is a relation between parameters C and n . Usig Simple Paris Equation through which we concluded the practical values of C and n and compared them with the theoretical values which have been concluded by Generalized Paris Equation . The value of da/dN and ∆K for every material and sample were concluded and compared with the data which was used in
... Show MoreScheduling problems have been treated as single criterion problems until recently. Many of these problems are computationally hard to solve three as single criterion problems. However, there is a need to consider multiple criteria in a real life scheduling problem in general. In this paper, we study the problem of scheduling jobs on a single machine to minimize total tardiness subject to maximum earliness or tardiness for each job. And we give algorithm (ETST) to solve the first problem (p1) and algorithm (TEST) to solve the second problem (p2) to find an efficient solution.
NeighShrink is an efficient image denoising algorithm based on the discrete wavelet
transform (DWT). Its disadvantage is to use a suboptimal universal threshold and identical
neighbouring window size in all wavelet subbands. Dengwen and Wengang proposed an
improved method, which can determine an optimal threshold and neighbouring window size
for every subband by the Stein’s unbiased risk estimate (SURE). Its denoising performance is
considerably superior to NeighShrink and also outperforms SURE-LET, which is an up-todate
denoising algorithm based on the SURE. In this paper different wavelet transform
families are used with this improved method, the results show that Haar wavelet has the
lowest performance among
Recording an Electromyogram (EMG) signal is essential for diagnostic procedures like muscle health assessment and motor neurons control. The EMG signals have been used as a source of control for powered prosthetics to support people to accomplish their activities of daily living (ADLs). This work deals with studying different types of hand grips and finding their relationship with EMG activity. Five subjects carried out four functional movements (fine pinch, tripod grip and grip with the middle and thumb finger, as well as the power grip). Hand dynamometer has been used to record the EMG activity from three muscles namely; Flexor Carpi Radialis (FCR), Flexor Digitorum Superficialis (FDS), and Abductor Pollicis Brevis (ABP) with different
... Show MoreIn this paper, nanofluid of TiO2/water of concentrations of 0.002% and 0.004% volume was used. This nanofluid was flowing through heat exchanger of shell and concentric double tubes with counter current flow to the hot oil. The thermal conductivity of nanofluid is enhanced with increasing concentrations of the TiO2, this increment was by 19% and 16.5% for 0.004% and 0.002% volume respectively relative to the base fluid (water). Also the heat transfer coefficient of the nanofluid is increased as Reynold's number and nanofluid concentrations increased too. The heat transfer coefficient is increased by 66% and 49% for 0.004% and 0.002% volume respectively relative to the base fluid. This study showed that the friction
... Show MoreRecognizing cars is a highly difficult task due to the wide variety in the appearance of cars from the same car manufacturer. Therefore, the car logo is the most prominent indicator of the car manufacturer. The captured logo image suffers from several problems, such as a complex background, differences in size and shape, the appearance of noise, and lighting circumstances. To solve these problems, this paper presents an effective technique for extracting and recognizing a logo that identifies a car. Our proposed method includes four stages: First, we apply the k-medoids clustering method to extract the logo and remove the background and noise. Secondly, the logo image is converted to grayscale and also converted to a binary imag
... Show More
The apricot plant was washed, dried, and powdered after harvesting to produce a fine powder that was used in water treatment. created an alcoholic extract from the apricot plant using ethanol, which was then analysed using GC-MS, Fourier transform infrared spectroscopy, and ultraviolet-visible spectroscopy to identify the active components. Zinc nanoparticles were created using an alcoholic extract. FTIR, UV-Vis, SEM, EDX, and TEM are used to characterize zinc nanoparticles. Using a continuous processing procedure, zinc nanoparticles with apricot extract and powder were employed to clean polluted water. Firstly, 2 g of zinc nanoparticles were used with 20 ml of polluted water, and the results were Tetra 44% and Levo 32%; after
... Show MoreRecently, Human Activity Recognition (HAR) has been a popular research field due to wide spread of sensor devices. Embedded sensors in smartwatch and smartphone enabled applications to use sensors in activity recognition with challenges for example, support of elderly’s daily life . In the aim of recognizing and analyzing human activity many approaches have been implemented in researches. Most articles published on human activity recognition used a multi -sensors based methods where a number of sensors were tied on different positions on a human body which are not suitable for many users. Currently, a smartphone and smart watch device combine different types of sensors which present a new area for analysi
... Show MoreThe current study was designed to investigate the occurrence of aflatoxin B1 in thirty two samples of fish feedstuff were collected randomly from some Iraqi local markets using ELISA technique. Aflatoxin B1 was detected in thirty samples and the concentration of toxin ranged from 50 ppb to 1000 ppb.
Microwave and ozone were used for detoxification of aflatoxin B1 from sample with highest concentration (1000 ppb), two degree of temperature and two times (50°C and 100°C for 5 minute and 10 minute to each degree) of microwave, also two doses and two times (2 g and 4 g for 5 minute and 10 minute to each dose) of ozone gas were used.
Degradation of aflatoxin B1 by
... Show More