<p class="0abstract">The rapidly growing 3D content exchange over the internet makes securing 3D content became a very important issue. The solution for this issue is to encrypting data of 3D content, which included two main parts texture map and 3D models. The standard encryption methods such as AES and DES are not a suitable solution for 3D applications due to the structure of 3D content, which must maintain dimensionality and spatial stability. So, these problems are overcome by using chaotic maps in cryptography, which provide confusion and diffusion by providing uncorrelated numbers and randomness. Various works have been applied in the field of 3D content-encryption based on the chaotic system. This survey will attempt to review the approaches and aspects of the structure used for 3D content encryption methods for different papers. It found the methods that used chaotic maps with large keyspace are more robust to various attacks than other methods that used encryption schemes without chaotic maps. The methods that encrypting texture, polygon, and vertices for 3D content provide full protection than another method that provides partial protection.</p>
Due to the vast using of digital images and the fast evolution in computer science and especially the using of images in the social network.This lead to focus on securing these images and protect it against attackers, many techniques are proposed to achieve this goal. In this paper we proposed a new chaotic method to enhance AES (Advanced Encryption Standards) by eliminating Mix-Columns transformation to reduce time consuming and using palmprint biometric and Lorenz chaotic system to enhance authentication and security of the image, by using chaotic system that adds more sensitivity to the encryption system and authentication for the system.
Modern education incorporates strong elements of collaborative learning: activities that prompt students to collaborate on completing learning tasks. In this work we investigate the relationship between media type and student collaboration and attribution patterns during collaborative content creation. We run similarity analyses on text and video artifacts submitted by students as part of collaborative exercises in an undergraduate module. Our main finding is that the same cohort of students was significantly more likely to attribute non-original content to its sources when authoring text compared to video content and when this content is not produced by a peer student. Our preliminary results based on only two media suggest that media type
... Show MoreThis study was conducted to estimate some heavy metals cadmium, lead, nickel and iron in 15 samples of Iraqi honey with 3 replicates for each sample which were collected from apiaries near potential contamination areas in five Iraqi governorates, including Baghdad, Karbala, Babylon, Diyala and Salah al-Din. The atomic absorption technique was used to estimate the concentrations of heavy metals, the results showed that there were significant differences at (P≤0.05) between the concentrations of these elements in the honey samples, the highest concentrations of cadmium 0.123 mg/kg were recorded in Baghdad, near the petrochemical production complex, lead 4.657 mg/kg and nickel 0.023 mg/kg in Babylon near the power plant, iron was
... Show MoreInformation hiding strategies have recently gained popularity in a variety of fields. Digital audio, video, and images are increasingly being labelled with distinct but undetectable marks that may contain a hidden copyright notice or serial number, or even directly help to prevent unauthorized duplication. This approach is extended to medical images by hiding secret information in them using the structure of a different file format. The hidden information may be related to the patient. In this paper, a method for hiding secret information in DICOM images is proposed based on Discrete Wavelet Transform (DWT). Firstly. segmented all slices of a 3D-image into a specific block size and collecting the host image depend on a generated key
... Show MoreIn this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
<span lang="EN-US">The use of bio-signals analysis in human-robot interaction is rapidly increasing. There is an urgent demand for it in various applications, including health care, rehabilitation, research, technology, and manufacturing. Despite several state-of-the-art bio-signals analyses in human-robot interaction (HRI) research, it is unclear which one is the best. In this paper, the following topics will be discussed: robotic systems should be given priority in the rehabilitation and aid of amputees and disabled people; second, domains of feature extraction approaches now in use, which are divided into three main sections (time, frequency, and time-frequency). The various domains will be discussed, then a discussion of e
... Show More