<p class="0abstract">The rapidly growing 3D content exchange over the internet makes securing 3D content became a very important issue. The solution for this issue is to encrypting data of 3D content, which included two main parts texture map and 3D models. The standard encryption methods such as AES and DES are not a suitable solution for 3D applications due to the structure of 3D content, which must maintain dimensionality and spatial stability. So, these problems are overcome by using chaotic maps in cryptography, which provide confusion and diffusion by providing uncorrelated numbers and randomness. Various works have been applied in the field of 3D content-encryption based on the chaotic system. This survey will attempt to review the approaches and aspects of the structure used for 3D content encryption methods for different papers. It found the methods that used chaotic maps with large keyspace are more robust to various attacks than other methods that used encryption schemes without chaotic maps. The methods that encrypting texture, polygon, and vertices for 3D content provide full protection than another method that provides partial protection.</p>
The soft sets were known since 1999, and because of their wide applications and their great flexibility to solve the problems, we used these concepts to define new types of soft limit points, that we called soft turning points.Finally, we used these points to define new types of soft separation axioms and we study their properties.
Let R be associative; ring; with an identity and let D be unitary left R- module; . In this work we present semiannihilator; supplement submodule as a generalization of R-a- supplement submodule, Let U and V be submodules of an R-module D if D=U+V and whenever Y≤ V and D=U+Y, then annY≪R;. We also introduce the the concept of semiannihilator -supplemented ;modules and semiannihilator weak; supplemented modules, and we give some basic properties of this conseptes.
Let R be a ring with identity and M is a unitary left R–module. M is called J–lifting module if for every submodule N of M, there exists a submodule K of N such that
A new class of generalized open sets in a topological space, called G-open sets, is introduced and studied. This class contains all semi-open, preopen, b-open and semi-preopen sets. It is proved that the topology generated by G-open sets contains the topology generated by preopen,b-open and semi-preopen sets respectively.
In this paper mildly-regular topological space was introduced via the concept of mildly g-open sets. Many properties of mildly - regular space are investigated and the interactions between mildly-regular space and certain types of topological spaces are considered. Also the concept of strong mildly-regular space was introduced and a main theorem on this space was proved.
In this paper, the concept of semi-?-open set will be used to define a new kind of strongly connectedness on a topological subspace namely "semi-?-connectedness". Moreover, we prove that semi-?-connectedness property is a topological property and give an example to show that semi-?-connectedness property is not a hereditary property. Also, we prove thate semi-?-irresolute image of a semi-?-connected space is a semi-?-connected space.
The purpose of this paper is to give some results theorems , propositions and corollaries concerning new algebraic systems flower , garden and farm with accustomed algebraic systems groupoid , group and ring.