In this paper, we employ the maximum likelihood estimator in addition to the shrinkage estimation procedure to estimate the system reliability (
The study of green colour in glass has a special importance on the glass quality, specially the effect of ferrous oxides content of the limestone. Results obtained that there was a reduction in green colour when different ferrous oxide contents in the limestone were added in glass production, limestone sources from two quarries, and the first contains 0.67% ferrous oxide and the second posses less ferrous oxide.
Reduction of green colour showed higher transmittance12% and it could be suggested that reduction of ferrous oxides content in the limestone is of special importance on the optical properties of glass.
Alopecia areata is considered as a major health problem, its importance is attributed to its
recent increased incidence in our population. Till now, there is no exact cause for alopecia areata
although researchers thought it's an autoimmune disease.
This clinical study was designed to evaluate the role of trace elements (zinc and copper) in patients
with alopecia areata. Twenty patients were diagnosed as having alopecia areata with an age range
(10-40 years) were involved in this study. Normal subjects of the same age group were also
evaluated as control. The level of serum Zn and Cu were measured by flame atomic absorption
spectrophotometry in both control and patient group. And the ratio of Zn/Cu was also estimated
Composite materials are widely used in the engineered assets as aerospace structures, marine and air navigation owing to their high strength/weight ratios. Detection and identification of damage in the composite structures are considered as an important part of monitoring and repairing of structural systems during the service to avoid instantaneous failure. Effective cost and reliability are essential during the process of detecting. The Lamb wave method is an effective and sensitive technique to tiny damage and can be applied for structural health monitoring using low energy sensors; it can provide good information about the condition of the structure during its operation by analyzing the propagation of the wave in the
... Show MoreIn this work, metal oxide nanostructures, mainly copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure, were synthesized by the DC reactive magnetron sputtering technique. The effect of deposition time on the spectroscopic characteristics, as well as on the nanoparticle size, was determined. A long deposition time allows more metal atoms sputtered from the target to bond to oxygen atoms and form CuO, NiO, or TiO2 molecules deposited as thin films on glass substrates. The structural characteristics of the final samples showed high structural purity as no other compounds than CuO, NiO, and TiO2 were found in the final samples. Also, the prepared multilayer structures did not show new compounds other than th
... Show MoreIn this work, pure and Ag-doped nickel oxide (NiO) thin films were deposited on glass substrates with different dopant concentrations (0.1, 0.2, 0.3 and 0.4 wt.%) by pulsed-laser deposition (PLD) technique at room temperature. These films were annealed at temperature of 450 °C. The structural and optical properties of the prepared thin films were studied. It was found that annealing process has lead to increase the transmittance of the deposited films. Also, the transmittance was found to increase with doping concentration of silver in the deposited NiO films. The optical energy gap was decreased from 3.5 to 3.2 eV as the doping concentration was increased to 0.4 %.
In this work, multilayer nanostructures were prepared from two metal oxide thin films by dc reactive magnetron sputtering technique. These metal oxide were nickel oxide (NiO) and titanium dioxide (TiO2). The prepared nanostructures showed high structural purity as confirmed by the spectroscopic and structural characterization tests, mainly FTIR, XRD and EDX. This feature may be attributed to the fine control of operation parameters of dc reactive magnetron sputtering system as well as the preparation conditions using the same system. The nanostructures prepared in this work can be successfully used for the fabrication of nanodevices for photonics and optoelectronics requiring highly-pure nanomaterials.