In this article, a numerical method integrated with statistical data simulation technique is introduced to solve a nonlinear system of ordinary differential equations with multiple random variable coefficients. The utilization of Monte Carlo simulation with central divided difference formula of finite difference (FD) method is repeated n times to simulate values of the variable coefficients as random sampling instead being limited as real values with respect to time. The mean of the n final solutions via this integrated technique, named in short as mean Monte Carlo finite difference (MMCFD) method, represents the final solution of the system. This method is proposed for the first time to calculate the numerical solution obtained for each subpopulation as a vector distribution. The numerical outputs are tabulated, graphed, and compared with previous statistical estimations for 2013, 2015, and 2030, respectively. The solutions of FD and MMCFD are found to be in good agreement with small standard deviation of the means, and small measure of difference. The new MMCFD method is useful to predict intervals of random distributions for the numerical solutions of this epidemiology model with better approximation and agreement between existing statistical estimations and FD numerical solutions.
The fluorescence emission of Rhodamine 6G (R6G) and Acriflavine dyes in PMMA polymer have been studied by changing the irradiation and exposure time of laser light to know the effect of this parameter. It was found that the fluorescence intensity decreases in the polymer samples doped dyes as the exposure time increases and then reaches stabilization at long times, this behavior called photobleaching, which have been shown in liquid phase less than solid phase. Using 2nd harmonic with wavelength 530 nm laser, the photobleaching effect in the two dye-doped polymers different solvent but same was studied. It was observed that photobleaching of by different solution and by using dip spin coating the photobleaching seem in liquid phase
... Show MoreThis research includes the study of dual data models with mixed random parameters, which contain two types of parameters, the first is random and the other is fixed. For the random parameter, it is obtained as a result of differences in the marginal tendencies of the cross sections, and for the fixed parameter, it is obtained as a result of differences in fixed limits, and random errors for each section. Accidental bearing the characteristic of heterogeneity of variance in addition to the presence of serial correlation of the first degree, and the main objective in this research is the use of efficient methods commensurate with the paired data in the case of small samples, and to achieve this goal, the feasible general least squa
... Show MoreThe software-defined network (SDN) is a new technology that separates the control plane from data plane for the network devices. One of the most significant issues in the video surveillance system is the link failure. When the path failure occurs, the monitoring center cannot receive the video from the cameras. In this paper, two methods are proposed to solve this problem. The first method uses the Dijkstra algorithm to re-find the path at the source node switch. The second method uses the Dijkstra algorithm to re-find the path at the ingress node switch (or failed link).
... Show MoreThe aim of the research is to identify an appropriate training method that raises the levels of immune globulins (IgA, IgM, IgG) and white blood cells and the effect of training by (HIT) method using resistance (weights) as a training curriculum that increases immunity and ensures the continuation of the pills after the return of activity from the stone The response to the Covid-19 epidemic among amateur weightlifters, the researchers relied on the method of trace analysis in an experimental way by conducting a pre-, medial and post-test with the same experimental one agroup on a sample of amateur weightlifters in the Fury private hall for weightlifting and body building in Adhamiya, the number of sample members reached (15 players) who int
... Show MoreToday, the prediction system and survival rate became an important request. A previous paper constructed a scoring system to predict breast cancer mortality at 5 to 10 years by using age, personal history of breast cancer, grade, TNM stage and multicentricity as prognostic factors in Spain population. This paper highlights the improvement of survival prediction by using fuzzy logic, through upgrading the scoring system to make it more accurate and efficient in cases of unknown factors, age groups, and in the way of how to calculate the final score. By using Matlab as a simulator, the result shows a wide variation in the possibility of values for calculating the risk percentage instead of only 16. Additionally, the accuracy will be calculate
... Show MoreProducing pseudo-random numbers (PRN) with high performance is one of the important issues that attract many researchers today. This paper suggests pseudo-random number generator models that integrate Hopfield Neural Network (HNN) with fuzzy logic system to improve the randomness of the Hopfield Pseudo-random generator. The fuzzy logic system has been introduced to control the update of HNN parameters. The proposed model is compared with three state-ofthe-art baselines the results analysis using National Institute of Standards and Technology (NIST) statistical test and ENT test shows that the projected model is statistically significant in comparison to the baselines and this demonstrates the competency of neuro-fuzzy based model to produce
... Show MoreIn this paper, a compact genetic algorithm (CGA) is enhanced by integrating its selection strategy with a steepest descent algorithm (SDA) as a local search method to give I-CGA-SDA. This system is an attempt to avoid the large CPU time and computational complexity of the standard genetic algorithm. Here, CGA dramatically reduces the number of bits required to store the population and has a faster convergence. Consequently, this integrated system is used to optimize the maximum likelihood function lnL(φ1, θ1) of the mixed model. Simulation results based on MSE were compared with those obtained from the SDA and showed that the hybrid genetic algorithm (HGA) and I-CGA-SDA can give a good estimator of (φ1, θ1) for the ARMA(1,1) model. Anot
... Show MoreThe operation and management of water resources projects have direct and significant effects on the optimum use of water. Artificial intelligence techniques are a new tool used to help in making optimized decisions, based on knowledge bases in the planning, implementation, operation and management of projects as well as controlling flowing water quantities to prevent flooding and storage of excess water and use it during drought.
In this research, an Expert System was designed for operating and managing the system of AthTharthar Lake (ESSTAR). It was applied for all expected conditions of flow, including the cases of drought, normal flow, and during floods. Moreover, the cases of hypothetical op
... Show More
