In this article, a numerical method integrated with statistical data simulation technique is introduced to solve a nonlinear system of ordinary differential equations with multiple random variable coefficients. The utilization of Monte Carlo simulation with central divided difference formula of finite difference (FD) method is repeated n times to simulate values of the variable coefficients as random sampling instead being limited as real values with respect to time. The mean of the n final solutions via this integrated technique, named in short as mean Monte Carlo finite difference (MMCFD) method, represents the final solution of the system. This method is proposed for the first time to calculate the numerical solution obtained for each subpopulation as a vector distribution. The numerical outputs are tabulated, graphed, and compared with previous statistical estimations for 2013, 2015, and 2030, respectively. The solutions of FD and MMCFD are found to be in good agreement with small standard deviation of the means, and small measure of difference. The new MMCFD method is useful to predict intervals of random distributions for the numerical solutions of this epidemiology model with better approximation and agreement between existing statistical estimations and FD numerical solutions.
This work aims to investigate the integrated ultra-dense wavelength division multiplexing (UDWDM) and polarization division multiplexing (PDM) schemes incorporated in the free space optic (FSO) communication system. Erbium-doped fiber amplifiers (EDFAs) are used as post and pre-amplifiers in the proposed UDWDM–PDM–FSO system to boost the transmission power for increasing the distance. Thirty-two channels are transported over the FSO link to realize the total data transmission of 160 and 320 Gbps with 0.08 and 0.1 nm channel spacing, respectively. Results are also reported with non-return to zero modulation schemes. The performance of the proposed UDWDM–PDM–FSO transmission sys
Background: Invasion in oral cancer involves alterations in cell-cell and cell-matrix interactions that accompanied by loss of cell adhesion. Catenins stabilize cellular adherence junctions by binding to E-cadherin, which further mediates cell-cell adhesion and regulates proliferation and differentiation of epithelial cells. The Wnt/β-catenin pathway is one of the major signaling pathways in cell proliferation, oncogenesis, and epithelial-mesenchymal transition. Aims of the study: to detect immunohistochemical distribution pattern and different subcellular localization of β-catenin in oral squamous cell carcinoma and relate such expression to Bryne’s invasive grading system. Materials and Methods: This study included 30 paraffi
... Show MoreIt seems that the features of the theatrical discourse , since its early establishment by the Greeks, were cultural features specifically confined to that society. Such features determined the direction of the theatrical discourse for this state instead of that state. There could be some sort of similarity among those features , nevertheless they remained within the general humanitarian framework . What achieved relatedness were those features and particularities that distinguished the theatrical community. Such features and particularities vary from one show to another. This is what we call " Local Specificity" .The Iraqi theatrical memory has always emphasized the concept of Experimentation through originality and renewal since the arr
... Show More<span>Blood donation is the main source of blood resources in the blood banks which is required in the hospitals for everyday operations and blood compensation for the patients. In special cases, the patients require fresh blood for compensation such as in the case of major operations and similar situations. Moreover, plasma transfusions are vital in the current pandemic of coronavirus disease (COVID-19). In this paper, we have proposed a donation system that manages the appointments between the donors and the patient in the case of fresh blood donation is required. The website is designed using the Bootstrap technology to provide suitable access using the PC or the smart phones web browser. The website contains large database
... Show MoreSmart cities have recently undergone a fundamental evolution that has greatly increased their potentials. In reality, recent advances in the Internet of Things (IoT) have created new opportunities by solving a number of critical issues that are allowing innovations for smart cities as well as the creation and computerization of cutting-edge services and applications for the many city partners. In order to further the development of smart cities toward compelling sharing and connection, this study will explore the information innovation in smart cities in light of the Internet of Things (IoT) and cloud computing (CC). IoT data is first collected in the context of smart cities. The data that is gathered is uniform. The Internet of Things,
... Show MoreMany oil and gas processes, including oil recovery, oil transportation, and petroleum processing, are negatively impacted by the precipitation and deposition of asphaltene. Screening methods for determining the stability of asphaltenes in crude oil have been developed due to the high cost of remediating asphaltene deposition in crude oil production and processing. The colloidal instability index, the Asphaltene-resin ratio, the De Boer plot, and the modified colloidal instability index were used to predict the stability of asphaltene in crude oil in this study. The screening approaches were investigated in detail, as done for the experimental results obtained from them. The factors regulating the asphaltene precipitation are different fr
... Show MoreProblem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show More