Most studies on deep beams have been made with reinforced concrete deep beams, only a few studies investigate the response of prestressed deep beams, while, to the best of our knowledge, there is not a study that investigates the response of full scale (T-section) prestressed deep beams with large web openings. An experimental and numerical study was conducted in order to investigate the shear strength of ordinary reinforced and partially prestressed full scale (T-section) deep beams that contain large web openings in order to investigate the prestressing existence effects on the deep beam responses and to better understand the effects of prestressing locations and opening depth to beam depth ratio on the deep beam performance and behavior. A total of seven deep beam specimens with identical shear span-to-depth ratio, compressive strength of concrete, and amount of horizontal and vertical web reinforcement ratios have been tested under mid-span concentrated load applied monotonically until failure. The main variables studied were the effects of depth of the web openings and the prestressing location on deep beam performance. The test results showed that the enlargement in the size of web openings substantially reduces the element’s shear capacities while prestressing strands location above the web openings has more effect at increasing the element’s shear capacities. The numerical study considered three-dimensional finite element models that have been developed in Abaqus software to simulate and predict the performance of prestressed deep beams. The results of numerical simulations were in good agreement with the experimental ones.
The study focused on examining the behavior of six concrete beams that were reinforced with glass fiber-reinforced polymer (GFRP) bars to evaluate their performance in terms of their load-carrying capacity, deflection, and other mechanical properties. The experimental investigation would provide insights into the feasibility and effectiveness of GFRP bars as an alternative to traditional reinforcement materials like steel bars in concrete structures. The GFRP bars were used in both the longitudinal and transverse directions. Each beam in the study shared the following specifications: an overall length of 2,400 mm, a clear span of 2,100 mm, and a rectangular cross-section measuring
Copper electrodeposition by electrorefining process in acidic sulfate media contains 40 g/l of cupric ions and 160 g/l of sulfuric acid was achieved to study the influence of the operating parameters on cathode purity, surface morphology, deposition rate, current efficiency and power consumption. These operating parameters and there ranges are: current density 200, 300 and 400 A/m2, electrolyte temperature 35, 50 and 65 oC, electrodes spacing 15, 30 and 45 mm and electrolyte residence time 6, 4 and 2 h were utilized. XRF, SEM and EDX analyses were attained to clarify the properties of the produced cathode.
In this research the behavior of reinforced concrete columns with large side openings under impact loads was studied. The overall cross sectional dimensions of the column specimens used in this research were (500*1400) mm with total height of (14000) mm. The dimensions of side openings were (600*2000) mm. The column was reinforced with (20) mm diameter in longitudinal direction, while (12) mm ties were used in the transverse direction. The effect of eccentric impact loads on the horizontal and vertical displacement for this column was studied. &
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca
... Show MoreWeb testing is very important method for users and developers because it gives the ability to detect errors in applications and check their quality to perform services to users performance abilities, user interface, security and other different types of web testing that may occur in web application. This paper focuses on a major branch of the performance testing, which is called the load testing. Load testing depends on an important elements called request time and response time. From these elements, it can be decided if the performance time of a web application is good or not. In the experimental results, the load testing applied on the website (http://ihcoedu.uobaghdad.edu.iq) the main home page and all the science departments pages. In t
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th
... Show MoreThis study was set out to investigate factors affecting labor productivity on construction in the north of Iraq (Kurdistan) and to rank all the factors based on engineers, contractors, and designer’s opinions. 76 factors were analyzed based on previous literature and a pilot study. Next, by using online Google Form, a questionnaire form was created and sent to people who have experience in the construction industry. Afterward, the questionnaire form was sent to targeted people by email and social media apps. Factors were divided into nine groups “Management, Technical and Technology, Human and Workforce, Leadership, Motivation, Safety, Time, Material and Equipment, and External”. However, 202 respondents participated in this study,
... Show More