Due to the remarkable progress in photovoltaic technology, enhancing efficiency and minimized the costs have emerged as global challenges for the solar industry. A crucial aspect of this advancement involves the creation of solar cell antireflection coating, which play a significant role in minimizing sunlight reflection on the cell surface. In this study, we report on the optimization of the characteristics of CeO2 films prepared by pulsed laser deposition through the variation of laser energy density. The deposited CeO2 nanostructure films have been used as an effective antireflection coating (ARC) and light-trapping morphology to improve the efficiency of silicon crystalline solar cell. The film’s thickness increases as laser fluence increase. The refractive index of the antireflective film is measured as a function of laser fluence. The properties of CeO2 thin films’ were characterized by various techniques. X-ray diffraction measurements show the grown films were crystalline with cubic and hexagonal phases. The degree of crystallinity of the film increases with the increase in the laser fluence. Scanning electron microscope results reveal that the film’s morphology and film uniformity improved as the laser fluence increases. Raman shift of the CeO2 film as a function of laser energy density was investigated. Photovoltaic properties show that the conversion efficiency of the silicon solar cell increases from 8.37 to 14.04% after deposited with ARC CeO2 film at laser energy density of 76.39 J/cm2. The CeO2 films deposited at 76.39 J/cm2 laser pulse energy density have highest hydrophobicity among all the prepared samples.
In this research, thin films of CdO: Mg and n-CdO: Mg/ p-Si heterojunction with thickness (500±50) nm have been deposited at R.T (300 K) by thermal evaporation technique. These samples have been annealed at different annealing temperatures (373 and 473) K for one hour. Structural, optical and electrical properties of {CdO: Mg (1%)} films deposited on glass substrate as a function of annealing temperature are studied in detail. The C-V measurement of n-CdO: Mg/ p-Si heterojunction (HJ) at frequency (100 KHz) at different annealing temperatures have shown that these HJ were of abrupt type and the builtin potential (Vbi) increase as the annealing temperature increases. The I-V characteristics of heterojunction prepared under dark case at
... Show MoreCarbon nanoparticles are prepared by sonication using carbon black powder. The surface morphology of carbon black (CB) and carbon nanoparticles (CNPs) is investigated using scanning electron microscopy (SEM). The particles size ranges from 100 nm to 400 nm for CB and from 10 nm to 100 nm for CNPs. CNPs and CB are mixed with silicon glue of different ratios of 0.025, 0.2, 0.05, and 0.1 to synthesis films. The optical properties of the prepared films are investigated through reflectance and absorbance analyses. The ratio of 0.05 for CNPs and CB is the best for solar paint because of its higher solar water heater efficiency and is then added to the silicon glue . Temperature of cold water and temperature of hot water in storage tank were ta
... Show MoreThe production and analysis of an optimal interference pattern for the optical fiber interferometer of a 193.1THz continuous laser source was simulated by comparing the spectral spectroscopy of the two arms of interferometer to be used as a heterodyne detection in sensing the body range, speed, and direction of movement by delaying the time between the arms.
The study showed that the fringe pattern can be sensed a range by the free spectral range FSR and the velocity by the fringe separation FS and the direction by the fringe spatial frequency FSF.
The nonlinear optical properties for polymeric (PMMA) doping with dye Rhodmine (R3Go) has been studied .The samples are prepared by normal polymerization method with concentrations of 5x10-5mol/l and a thickness of 272.5µm.
Plasma effect was studied on samples prepared before and after exposure to the Nd: YAG laser for three times 5, 10 and 15 minutes. Z-Scan technique is used to determine the nonlinear optical properties such as; refractive index (n2) and the coefficient of nonlinear absorption (β). It was found that the nonlinear properties is change by increasi
... Show MoreThe ferric oxide nanoparticles (Fe2O3) which are deposited at interface which is related to hole collecting buffer layer [poly(3,4-ethyl-enedioxythiophene): poly(styrene-sulfonate) (PEDOT: PSS)] as well as regioregular poly(3-hexyl-thiophene): Zinc oxide nanoparticles (P3HT): (ZnO) active layer have been considerable increasing the performance of solar cell. Also, the solar cell devices have been fabricated with a weight ratio of 1:0.7, 1:0.8, 1:0.9 and 1:1 of P3HT and ZnO, respectively. In addition, photo physical characteristics regarding such devices with different value of the weight ratio were examined. This work is indicating that the absorption spectrum related to blend will be broad
... Show MoreWe describe the synthesis and characterization of a novel 2D-MnOx material using a combination of HR-TEM, XAS, XRD, and reactivity measurements. The ease with which the 2D material can be made and the conditions under which it can be made implies that water oxidation catalysts previously described as “birnessite-like” (3D) may be better thought of as 2D materials with very limited layer stacking. The distinction between the materials as being “birnessite-like” and “2D” is important because it impacts on our understanding of the function of these materials in the environment and as catalysts. The 2D-MnOx material is noted to be a substantially stronger chemical oxidant than previously noted for other birnessite-like manganese oxi
... Show MoreIn this paper thermo-hydrodynamic characteristics were investigated experimentally for a new type shell-helical coiled tube heat exchanger used as a storage tank of closed loop solar water heater system. Triple concentric helical coils were made of copper tubes of (12.5mm OD and 10mm ID) with coils diameter of (207, 152.2, 97mm) for outer, middle and inner coils respectively. The experiments were carried out during a clear sky days of (March and April 2012). The parameters studied in this work are: history of average temperature of shell side of the storage tank, collector heat gain, heat rejected from coils to shell side of the storage tank, collector efficiency, thermal effectiveness of the heat exchanger (storage tank), and pressure d
... Show MoreThe effects of using aqueous nanofluids containing covalently functionalized graphene nanoplatelets with triethanolamine (TEA-GNPs) as novel working fluids on the thermal performance of a flat-plate solar collector (FPSC) have been investigated. Water-based nanofluids with weight concentrations of 0.025%, 0.05%, 0.075%, and 0.1% of TEA-GNPs with specific surface areas of 300, 500, and 750 m2/g were prepared. An experimental setup was designed and built and a simulation program using MATLAB was developed. Experimental tests were performed using inlet fluid temperatures of 30, 40, and 50 °C; flow rates of 0.6, 1.0, and 1.4 kg/min; and heat flux intensities of 600, 800, and 1000 W/m2. The FPSC’s efficiency increased as the flow rate and hea
... Show MoreA new Schiff base [I] was prepared by refluxing Amoxicillin trihydrate and 4-Hydroxy- 3,5-dimethoxybenzaldehyde in aqueous methanol solution using glacial acetic acid as a catalyst. The new 1,3-oxazepine derivative [II] was obtained by Diels- Alder reaction of Schiff base [I] with phthalic anhydride in dry benzene. The reaction of Schiff base [I] with thioglycolic acid in dry benzene led to the formation of thiazolidin-4-one derivative [III]. While the imidazolidin-4-one [IV] derivative was produced by reacting the mentioned Schiff base [I] with glycine and triethylamine in ethanol for 9 hrs. Tetrazole derivative [V] was synthesized by refluxing Schiff base [I] with sodium azide in dimethylformamid DMF. The structure of synthesized compound
... Show MoreThe thermal performance of a flat-plate solar collector (FPSC) using novel heat transfer fluids of aqueous colloidal dispersions of covalently functionalized multi-walled carbon nanotubes with β-Alanine (Ala-MWCNTs) has been studied. Multi-walled carbon nanotubes (MWCNTs) with outside diameters of (< 8 nm) and (20–30 nm) having specific surface areas (SSAs) of (500 m2/g) and (110 m2/g), respectively, were utilized. For each Ala-MWCNTs, waterbased nanofluids were synthesized using weight concentrations of 0.025%, 0.05%, 0.075%, and 0.1%. A MATLAB code was built and a test rig was designed and developed. Heat flux intensities of 600, 800, and 1000 W/m2; mass flow rates of 0.6, 1.0, and 1.4 kg/min; and inlet fluid temperatures of 30, 40, an
... Show More