Due to the remarkable progress in photovoltaic technology, enhancing efficiency and minimized the costs have emerged as global challenges for the solar industry. A crucial aspect of this advancement involves the creation of solar cell antireflection coating, which play a significant role in minimizing sunlight reflection on the cell surface. In this study, we report on the optimization of the characteristics of CeO2 films prepared by pulsed laser deposition through the variation of laser energy density. The deposited CeO2 nanostructure films have been used as an effective antireflection coating (ARC) and light-trapping morphology to improve the efficiency of silicon crystalline solar cell. The film’s thickness increases as laser fluence increase. The refractive index of the antireflective film is measured as a function of laser fluence. The properties of CeO2 thin films’ were characterized by various techniques. X-ray diffraction measurements show the grown films were crystalline with cubic and hexagonal phases. The degree of crystallinity of the film increases with the increase in the laser fluence. Scanning electron microscope results reveal that the film’s morphology and film uniformity improved as the laser fluence increases. Raman shift of the CeO2 film as a function of laser energy density was investigated. Photovoltaic properties show that the conversion efficiency of the silicon solar cell increases from 8.37 to 14.04% after deposited with ARC CeO2 film at laser energy density of 76.39 J/cm2. The CeO2 films deposited at 76.39 J/cm2 laser pulse energy density have highest hydrophobicity among all the prepared samples.
Nowadays, the mobile communication networks have become a consistent part of our everyday life by transforming huge amount of data through communicating devices, that leads to new challenges. According to the Cisco Networking Index, more than 29.3 billion networked devices will be connected to the network during the year 2023. It is obvious that the existing infrastructures in current networks will not be able to support all the generated data due to the bandwidth limits, processing and transmission overhead. To cope with these issues, future mobile communication networks must achieve high requirements to reduce the amount of transferred data, decrease latency and computation costs. One of the essential challenging tasks in this subject
... Show MoreWellbore instability is one of the major issues observed throughout the drilling operation. Various wellbore instability issues may occur during drilling operations, including tight holes, borehole collapse, stuck pipe, and shale caving. Rock failure criteria are important in geomechanical analysis since they predict shear and tensile failures. A suitable failure criterion must match the rock failure, which a caliper log can detect to estimate the optimal mud weight. Lack of data makes certain wells' caliper logs unavailable. This makes it difficult to validate the performance of each failure criterion. This paper proposes an approach for predicting the breakout zones in the Nasiriyah oil field using an artificial neural network. It
... Show MoreDiacerein (DCN) is a semi-synthetic anthraquinone derivative of Rhein that is indicated for the management of osteoarthritis. Diacerein exhibits poor dissolution in the GIT fluids and suffers from low bioavailability upon oral administration in addition to the laxative effect of Rhein metabolites. The aim of the present study was to develop novasomal vesicles with optimized entrapment efficiency and size to serve as a carrier for transdermal delivery of diacerein. Novasomal vesicles were prepared by thin film hydration method thin film hydration. The prepared vesicles were optimized utilizing different surfactant to cholesterol molar ration, sonication type, different sonication times and varying fatty acid level. The prepared vesicles were
... Show MoreAbstract
Travel Time estimation and reliability measurement is an important issues for improving operation efficiency and safety of traffic roads networks. The aim of this research is the estimation of total travel time and distribution analysis for three selected links in Palestine Arterial Street in Baghdad city. Buffer time index results in worse reliability conditions. Link (2) from Bab Al Mutham intersection to Al-Sakara intersection produced a buffer index of about 36% and 26 % for Link (1) Al-Mawall intersection to Bab Al- Mutham intersection and finally for link (3) which presented a 24% buffer index. These illustrated that the reliability get worst for link
... Show MoreFicus (FIC) leaf extract used as corrosion inhibitor for carbon steel alloy (C.S) in two corrosive environments (saline and acidic) with four concentrations (1, 2, 3 and 4 ppm) at varied temperature range between (298-328 K) using electrochemical polarization measurements. The importance of this work focused on the use the green chemistry that is far from the chemical materials effect. The results of polarization presented the FIC inhibitor consider a mixed type (anodic and cathodic) inhibitor. Tafel curve used to evaluate the corrosion inhibition activity. In a saline medium, the best inhibitor efficiency reaches to (87%) in 2 ppm and IE% reach to (99%) for HCl medium inhibited by 1ppm. Langmuir isotherm obeys the study by thermodynamic pa
... Show MoreInvasomes are newly developed types of nanovesicles. A vesicular drug delivery system is considered one of the approaches for transdermal delivery to enhance permeation and improve drug bioavailability. Ondansetron is a serotonin receptor antagonist used for treating vomiting associated with different clinical cases. The study aimed to prepare invasomal dispersions for improving permeation of ondansetron across the skin with a controlled release pattern. Twenty-seven formulas of ondansetron-loaded invasomes were prepared by a modified mechanical dispersion method. These formulas were optimized by studying the effect of variables on entrapment efficiency. Vesicle size, polydispersity, zeta potential, in-vitro release and ex-vivo perm
... Show MoreThe significant addition of immersive technologies, Virtual Reality (VR), Augmented Reality(AR) and Mixed Reality(MR) are transforming the domain of design education. Still, finding an equilibrium between these new tools alongside with traditional methods of teaching is a menace which educational institutes needs to solve. This paper proposes a structure that would help the ease with which to include immersive technologies within design education, keeping in mind the solid points of more conventional pedagogical methods. Based on a survey of interior design programs, this research highlights the potential for VR, AR and MR in student engagement, creativity skills and professional practices. The results suggest that adoption of an im
... Show More