Abstract As a part of our ongoing project on the design and synthesis of new 4-thiazolidinone derivatives with antimicrobial activity, four new 4-thiazolidinone derivatives carrying bromo, nitro, methyl, and chloro groups on the benzene ring were synthesized by starting with the 7-amino-4-methylcoumarin moiety, linking coumarin with various phenyl isothiocynate to form the thiourea group, and then cyclizing the derivatives, characterized by IR and 1HNMR, and assayed in vitro for their antimicrobial activity against Gram positive and Gram negative bacteria and fungi. Overall, 2-(4-methyl-2-oxo-2H-chromen-3-yl)-3-(4-nitrophenyl) thiazolidin-4-one to be the most powerful individuals in the series. Based on the observed data, it can be stated that the synthesized compounds demonstrate a variable range of antibacterial activity
In this study, an easy, low-cost, green, and environmentally
friendlier reagents have been used to prepare CdS QDs, in chemical
reaction method by mixed different ratio of CdO and sulfur in
paraffin liquid as solvent and oleic acid as the reacting media in
different concentration to get the optimum condition of the reaction
to formation CdS QDs. The results give an indication that the
behavior is at small concentration of 4ml of the oleic acid is best
concentration which give CdS QDs of small about to 9.23 nm with
nano fiber configuration.
ABSTRACT. The reaction between benzil and hexamethylenediamine formed a new ligand [L], [(1Z,3Z)-2,3-diphenyl-5,6,7,8,9,10-hexahydro-1,4-diazecine], of the type [N2], was synthesized by the condensation reaction through Schiff base reaction between benzil and hexamethylenediamine. The new Schiff base ligand reacts with Mnп, Niп and Coп metal ions to give the complexes with the general formula: [M(L)Cl2]. The elemental investigations have been used to analyze the ligand and its complexes by CHN, FT-IR, UV-Vis, TLC, mass spectrum, melting point with the study of biological activity to the formed compounds. From the data obtained, the proposed molecular structure adopts square planar structure about the metal ions. The study reveals
... Show MoreTraumatic radial nerve injury in humeral shaft fracture is the most common traumatic nerve injury in long-bone fracture, with overall prevalence 2-18%, ranging from traction to complete transection. Spontaneous recovery may reach 88%. The aim of the study is to assess the sensitivity & specificity of the ultrasound to detect the radial nerve injury and to see if this can be used as a diagnostic test. This is a prospective study on 17 adult patients with a closed fracture of the humeral shaft, dividing into two groups, the first group of 7 patients had signs and symptoms of radial nerve palsy at presentation and the second group of 10 patients had intact radial nerve function was considered as a control group. All these patients had at leas
... Show MoreIn this study, condensation polymerization was used to synthesize a number of novel liquid crystal polymers with 1,3,4-oxadiazole rings based on melamine. The new synthesized polymers were characterized by Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1HNMR) spectroscopy. Differential scanning calorimetry (DSC) and optical polarization microscopy (OPM) were used to investigate their liquid crystalline properties. The results demonstrated that throughout a wide temperature range, most of the polymers exhibited columnar (CohX) and nematic (N) liquid crystalline phases.
Zinc-indium-selenide ZnIn2Se4 (ZIS) ternary chalcopyrite thin film on glass with a 500 nm thickness was fabricated by using the thermal evaporation system with a pressure of approximately 2.5×10−5 mbar and a deposition rate of 12 Å/s. The effect of aluminum (Al) doping with 0.02 and 0.04 ratios on the structural and optical properties of film was examined. The utilization of X-ray diffraction (XRD) was employed to showcase the influence of aluminum doping on structural properties. XRD shows that thin ZIS-pure, Al-doped films at RT are polycrystalline with tetragonal structure and preferred (112) orientation. Where the
In this work, we construct the projectively distinct (k, n)-arcs in PG (3, 4) over Galois field GF (4), where k 5, and we found that the complete (k, n)-arcs, where 3 n 21, moreover we prove geometrically that the maximum complete (k, n)-arc in PG (3, 4) is (85, 21)-arc. A (k, n)-arcs is a set of k points no n+ 1 of which are collinear. A (k, n)-arcs is complete if it is not contained in a (k+ 1, n)-arcs