The Hopfield network is one of the easiest types, and its architecture is such that each neuron in the network connects to the other, thus called a fully connected neural network. In addition, this type is considered auto-associative memory, because the network returns the pattern immediately upon recognition, this network has many limitations, including memory capacity, discrepancy, orthogonally between patterns, weight symmetry, and local minimum. This paper proposes a new strategy for designing Hopfield based on XOR operation; A new strategy is proposed to solve these limitations by suggesting a new algorithm in the Hopfield network design, this strategy will increase the performance of Hopfield by modifying the architecture of the network, the training and the convergence phases, the proposed strategy based on size of pattern but will avoid learning similar pattern many time, whereas the new strategy XOR shows tolerance in the presence of noise-distorted patterns, infinite storage capacity and pattern inverse value. Experiments showed that the suggested method produced promising results by avoiding the majority of the Hopfield network's limitations. In additional it learns to recognize an infinite number of patterns with varying sizes while preserving a suitable noise ratio.
The complexity of multimedia contents is significantly increasing in the current world. This leads to an exigent demand for developing highly effective systems to satisfy human needs. Until today, handwritten signature considered an important means that is used in banks and businesses to evidence identity, so there are many works tried to develop a method for recognition purpose. This paper introduced an efficient technique for offline signature recognition depending on extracting the local feature by utilizing the haar wavelet subbands and energy. Three different sets of features are utilized by partitioning the signature image into non overlapping blocks where different block sizes are used. CEDAR signature database is used as a dataset f
... Show MoreInvestigating the human mobility patterns is a highly interesting field in the 21th century, and it takes vast attention from multi-disciplinary scientists in physics, economic, social, computer, engineering…etc. depending on the concept that relates between human mobility patterns and their communications. Hence, the necessity for a rich repository of data has emerged. Therefore, the most powerful solution is the usage of GSM network data, which gives millions of Call Details Records gained from urban regions. However, the available data still have shortcomings, because it gives only the indication of spatio-temporal data at only the moment of mobile communication activities. In th
he aim of this study is to get a plant extracts to use it as molluscicides to control the snail vector of Schistosomiasis andfinely control the disease. Laboratory study was performed to compare the molluscicidal activity of leaves and stems extractsof Cucumis melo against Bulinus truncatus snail. The snail B. truncatus was exposed to a serial concentrations of leaves andstems extracts (4000ppm, 5000ppm) in this work. Different effects of the extracts to the snail B. truncatus were recorded.These effects includes death, escaping and imbalance of snail behavior. 96hr-LD50 values of leaves extracts were calculatedfor the doses 4000 and 5000ppm as (76 and 37%) respectively while for stems were (105 and 47%) respectively. We found thatthe snail
... Show MoreThe feature extraction step plays major role for proper object classification and recognition, this step depends mainly on correct object detection in the given scene, the object detection algorithms may result with some noises that affect the final object shape, a novel approach is introduced in this paper for filling the holes in that object for better object detection and for correct feature extraction, this method is based on the hole definition which is the black pixel surrounded by a connected boundary region, and hence trying to find a connected contour region that surrounds the background pixel using roadmap racing algorithm, the method shows a good results in 2D space objects.
Keywords: object filling, object detection, objec
Steganography can be defined as the art and science of hiding information in the data that could be read by computer. This science cannot recognize stego-cover and the original one whether by eye or by computer when seeing the statistical samples. This paper presents a new method to hide text in text characters. The systematic method uses the structure of invisible character to hide and extract secret texts. The creation of secret message comprises four main stages such using the letter from the original message, selecting the suitable cover text, dividing the cover text into blocks, hiding the secret text using the invisible character and comparing the cover-text and stego-object. This study uses an invisible character (white space
... Show MoreRecognizing speech emotions is an important subject in pattern recognition. This work is about studying the effect of extracting the minimum possible number of features on the speech emotion recognition (SER) system. In this paper, three experiments performed to reach the best way that gives good accuracy. The first one extracting only three features: zero crossing rate (ZCR), mean, and standard deviation (SD) from emotional speech samples, the second one extracting only the first 12 Mel frequency cepstral coefficient (MFCC) features, and the last experiment applying feature fusion between the mentioned features. In all experiments, the features are classified using five types of classification techniques, which are the Random Forest (RF),
... Show MoreScientific development has occupied a prominent place in the field of diagnosis, far from traditional procedures. Scientific progress and the development of cities have imposed diseases that have spread due to this development, perhaps the most prominent of which is diabetes for accurate diagnosis without examining blood samples and using image analysis by comparing two images of the affected person for no less than a period. Less than ten years ago they used artificial intelligence programs to analyze and prove the validity of this study by collecting samples of infected people and healthy people using one of the Python program libraries, which is (Open-CV) specialized in measuring changes to the human face, through which we can infer the
... Show MoreFace Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a
... Show More