ATTAPULGITE clay was modified in this study by the graphene oxide sheets and the clay was diagnosed before and after modification using several techniques (Fourier-transform infrared spectroscopy FT-IR, X-ray powder diffraction XRD, Scanning electron microscope SEM , energy dispersive spectroscopy EDX ) ,The surface of the attapulgite clay (before (Ata) after modification by graphene oxide (Ata-GO) ) was applied to adsorption of the Alizarin dye from its water solutions through the application of several kinetic models (pseudo first-order model , pseudo second -order model , intraparticle diffusion model ),It was found that the practical results follow pseudo second -order model. The process of modification on the surface of the mud has improved the adsorption properties where the quantity dye adsorbed is equal to (55,81) mg/g by the surfaces (Ata ,Ata-GO) respectively.
A fixed callus weight of 150 mg was induced from immature embryos of three bread wheat Triticum aestivum L. genotypes (Tamos 2, El-izz and Mutant 1) cultured on nutrient medium {MS) containing Polyethylene glycol (PEG-6000) supplemented with concentrations (0.0, 3.0, 6.0, 9.0 or 12.0%) to evaluate their tolerance to water stress. Cultures were incubated in darkness at temperature of 25?1 ?C. Callus fresh and dry weights were recorded and soluble Carbohydrate and the amino acid Proline concentrations were determined. Results showed that there were significant differences in studied parameters among bread wheat genotypes of which Tamos 2 was higher in callus average fresh and dry weights which gave 353.33 and 38.46 mg/cultured tube respecti
... Show MoreThe purpose of this research paper is to present the second-order homogeneous complex differential equation , where , which is defined on the certain complex domain depends on solution behavior. In order to demonstrate the relationship between the solution of the second-order of the complex differential equation and its coefficient of function, by studying the solution in certain cases: a meromorphic function, a coefficient of function, and if the solution is considered to be a transformation with another complex solution. In addition, the solution has been provided as a power series with some applications.
The objective of this paper is to improve the general quality of infrared images by proposes an algorithm relying upon strategy for infrared images (IR) enhancement. This algorithm was based on two methods: adaptive histogram equalization (AHE) and Contrast Limited Adaptive Histogram Equalization (CLAHE). The contribution of this paper is on how well contrast enhancement improvement procedures proposed for infrared images, and to propose a strategy that may be most appropriate for consolidation into commercial infrared imaging applications.
The database for this paper consists of night vision infrared images were taken by Zenmuse camera (FLIR Systems, Inc) attached on MATRIC100 drone in Karbala city. The experimental tests showed sign
The effective insulation design of the stress grading (SG) system in form-wound stator coils is essential for preventing partial discharges and excessive heat generation under pulse-width modulation excitation. This paper proposes a method to find the optimal insulation design of the SG system aimed at reducing the dielectric and thermal stresses in the machine coil. The non-uniform transmission line model is used to predict the voltage propagation along the overhang, SG, and slot regions considering the variation in the physical properties of the insulation layers. The machine coil parameters for different insulation materials are calculated by using the finite element method. Two optimization algorithms, fmincon and particle swarm optimiz
... Show MoreAbstract
In this research provide theoretical aspects of one of the most important statistical distributions which it is Lomax, which has many applications in several areas, set of estimation methods was used(MLE,LSE,GWPM) and compare with (RRE) estimation method ,in order to find out best estimation method set of simulation experiment (36) with many replications in order to get mean square error and used it to make compare , simulation experiment contrast with (estimation method, sample size ,value of location and shape parameter) results show that estimation method effected by simulation experiment factors and ability of using other estimation methods such as(Shrinkage, jackknif
... Show MoreMassive multiple-input multiple-output (massive-MIMO) is considered as the key technology to meet the huge demands of data rates in the future wireless communications networks. However, for massive-MIMO systems to realize their maximum potential gain, sufficiently accurate downlink (DL) channel state information (CSI) with low overhead to meet the short coherence time (CT) is required. Therefore, this article aims to overcome the technical challenge of DL CSI estimation in a frequency-division-duplex (FDD) massive-MIMO with short CT considering five different physical correlation models. To this end, the statistical structure of the massive-MIMO channel, which is captured by the physical correlation is exploited to find sufficiently
... Show MoreWe are used Bayes estimators for unknown scale parameter when shape Parameter is known of Erlang distribution. Assuming different informative priors for unknown scale parameter. We derived The posterior density with posterior mean and posterior variance using different informative priors for unknown scale parameter which are the inverse exponential distribution, the inverse chi-square distribution, the inverse Gamma distribution, and the standard Levy distribution as prior. And we derived Bayes estimators based on the general entropy loss function (GELF) is used the Simulation method to obtain the results. we generated different cases for the parameters of the Erlang model, for different sample sizes. The estimates have been comp
... Show More
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show More