Self-compacted concrete (SCC) considered as a revolution progress in concrete technology due to its ability for flowing through forms, fusion with reinforcement, compact itself by its weight without using vibrators and economic advantages. This research aims to assess the fresh properties of SCC and study their effect on its compressive strength using different grading zones and different fineness modulus (F.M) of fine aggregate. The fineness modulus used in this study was (2.73, 2.82,2.9& 3.12) for different zones of grading (zone I, zone II& marginal zone(between zone I&II)) according to Iraqi standards (I.Q.S No.45/1984).Twelve mixes were prepared, each mix were tested in fresh state with slump, V-Funnel and L-Box tests, then 72 concrete cubes of (100*100*100) mm for different mixes were tested for compressive strength after 7 and 28 days of water curing. Results indicated that the combined effect of fineness modulus and grading zone were clear on the passing ability and little effect of grading zone on flow ability and viscosity of fresh SCC properties. Compressive strength decreases with increasing F.M and no effect of grading zone for F.M higher than 2.90.
Advancements and modernizations introduced into the educational and pedagogical systems have significantly impacted teaching processes and how subjects are presented and explained to students. The focus has shifted to how learners interact with the material they need to learn, providing sufficient opportunities for learning and granting them freedom and self-confidence to achieve learning objectives. The research problem stems from the researcher's experience as a lecturer in the College of Physical Education and Sports Science, particularly in teaching basketball. She observed that some instructors were deficient in using the most effective teaching methods. The researcher formulated her research question based on these observations: "What
... Show MoreRelease of industrial effluents comprising dyes in water bodies is one of the foremost causes of water pollution. Therefore, the proper and proficient treatment of these dyes contaminated left-over material before their release is crucial. Herein, an eco-friendly biological macromolecule Gum-Acacia (GA) integrated Fe3O4 nanoparticles composite hydrogel was manufactured via co-precipitation technique for effective adsorption of Congo red (CR) dye existing in water bodies. The as-prepared magnetic GA/Fe3O4 composite hydrogel was characterized by FTIR, XRD, EDX, VSM, SEM, and BET techniques. These studies discovered the fruitful fabrication of biodegradable magnetic GA/Fe3O4 composite hydrogel possessing porous structure with large surface are
... Show MoreInhalation of Staphylococcal Enterotoxin B (SEB) is known to induce acute lung injury (ALI) and studies from our laboratory have shown that THC, a psychoactive ingredient found in Cannabis sativa, can attenuate the ALI. In the current study, we investigated the role played by lung microbiota in ALI with or without THC treatment. A dual-dose of SEB was given to C3H/HeJ mice, which were then treated either with vehicle or THC. SEB-administration caused ALI and 100% mortality while all THC-treated mice survived and suppressed the inflammation in the lungs. Furthermore, lung microbiota was collected and 16S rRNA sequencing was performed. The data were analyzed to determine the alpha and b
In this work, we have used the QCD dynamic scenario of the quark gluon interaction to investigate and study photon emission theoretically based on quantum theory. The QCD theory is implemented by deriving the photon emission rate equation of the state of ideal QGP at a chemical potential. The photon rate of the quark-gluon interaction has to be calculated for the anti up-gluon interaction in the g → γ system at the temperature of system with critical temperature ( 132.38, , and 198.57) MeV and photon energy ( GeV. We investigated a significant effect of critical temperature, strength coupling, and photon energy on the photon rate contribution. Here, the increased photon emission rate and decreased streng
... Show MoreThis investigation aims to explore the potential of waterworks sludge (WS), low-cost byproduct of water treatment processes, as a sorbent for removing Congo Red (CR) dyes. This will be achieved by precipitating nano-sized (MgAl-LDH)-layered double hydroxide onto the surface of the sludge. The efficiency of utilizing MgAl-LDH to modify waterworks sludge (MWS) for use in permeable reactive barrier technology was confirmed through analysis with Fourier transform infrared and X-ray diffraction. The isotherm model was employed to elucidate the adsorption mechanisms involved in the process. Furthermore, the COMSOL model was utilized to establish a continuous testing model for the analysis of contaminant transport under diverse conditions. A st
... Show MoreA Stereomicroscopic Evaluation of Four Endodontic Sealers Penetration into Artificial Lateral Canals Using Gutta-Percha Single Cone Obturation Technique, Omar Jihad Banawi*, Raghad
In drilling processes, the rheological properties pointed to the nature of the run-off and the composition of the drilling mud. Drilling mud performance can be assessed for solving the problems of the hole cleaning, fluid management, and hydraulics controls. The rheology factors are typically termed through the following parameters: Yield Point (Yp) and Plastic Viscosity (μp). The relation of (YP/ μp) is used for measuring of levelling for flow. High YP/ μp percentages are responsible for well cuttings transportation through laminar flow. The adequate values of (YP/ μp) are between 0 to 1 for the rheological models which used in drilling. This is what appeared in most of the models that were used in this study. The pressure loss
... Show More