The emergence of such widespread pharmaceuticals as a pollutant has become one of the world's critical environmental problems that may lead to both the public's health and biodiversity deterioration. This article provides an exhaustive account of the current understanding of the environmental persistence of pharmaceutical contaminants following in-depth analysis of the additive effects of existing natural biodegradation pathways on the human health impact of these drugs. Paying special attention to biodegradation decomposing agents such as bacteria, fungi, and algae the paper estimates their ability to convert drug ingredients to compound that is eventually less toxic. Although these biologic systems contain an enormous potential for killing the unwanted pollutants, the variability in the complexity and endurance of the pharmaceutical substances overburden the degradation capabilities of these organisms thus necessitating improved biodegradation methods. Addressing the above-mentioned environmental factors, which include temperature, pH, and the occurrence of other contaminants, play a crucial role and have a direct impact that on the process of biodegradation, enhancing pollutants removal rate. To sum up, this paper enables the environmental science, microbiology and bioengineering enables creating progressively more functional and sustainable techniques of neutralizing these long-standing toxins; thus, protecting ecosystems, as well as human health.
Simple, precise and economic batch and flow injection analysis (FIA)-spectrophotometric methods have been established for simultaneous determination of salbutamol sulfate (SLB) in bulk powder and pharmaceutical forms. Both methods based on diazotization coupling reaction of SLB with another drug compound (sulfadimidine) as a safe and green diazotization agent in alkaline medium. At 444 nm, the maximum absorption of the orange azo-dye product was observed. A thorough investigation of all chemical and physical factors was conducted for batch and FIA procedures to achieve high sensitivity. Under the optimized experimental variables, SLB obeys Beer’s law in the concentration range of 0.25-4 and 10-100 μg/mL with limits of detection of 0.0
... Show MoreIn this paper, we have investigated some of the most recent energy efficient routing protocols for wireless body area networks. This technology has seen advancements in recent times where wireless sensors are injected in the human body to sense and measure body parameters like temperature, heartbeat and glucose level. These tiny wireless sensors gather body data information and send it over a wireless network to the base station. The data measurements are examined by the doctor or physician and the suitable cure is suggested. The whole communication is done through routing protocols in a network environment. Routing protocol consumes energy while helping non-stop communic
... Show MoreBiodiversity is one of the important biological factors in determining water quality and maintaining the
ecological balance. In this study, there are 223 species of phytoplankton were identified, and they are as
follows: 88 species of Bacillariophyta and were at 44%,70 species of Chlorophyta and they were at 29 %, 39
species of Cyanophyta and they were at 16 %, 12 species of Euglenozoa and they were at 4 %, four species of
Miozoa and they were at 3 %, and, Phylum Charophyta and Ochrophyta were only eight and two species,
respectively and both of them were at 2%. The common phytoplankton recorded in the sites studied
include Nitzschia palea, Scenedesmus quadricauda, Oscillatoria princeps, and Peridinium
A simple reverse-phase high performance liquid chromatographic method for the simultaneous analysis (separation and quantification) of furosemide (FURO), carbamazepine (CARB), diazepam (DIAZ) and carvedilol (CARV) has been developed and validated. The method was carried out on a NUCLEODUR® 100-5 C18ec column (250 x 4.6 mm, i. d.5μm), with a mobile phase comprising of acetonitrile: deionized water (50: 50 v/v, pH adjusted to 3.6 ±0.05 with acetic acid) at a flow rate 1.5 mL.min-1 and the quantification was achieved at 226 nm. The retention times of FURO, CARB, DIAZ and CARV were found to be 1.90 min, 2.79 min, 5.39 min and 9.56 min respectively. The method was validated in terms of linearity, accuracy, precision, limit of detection and li
... Show MoreSimple and sensitive batch and Flow-injection spectrophotometric methods for the determination of Procaine HCl in pure form and in injections were proposed. These methods were based on a diazotization reaction of procaine HCl with sodium nitrite and hydrochloric acid to form diazonium salt, which is coupled with chromatropic acid in alkaline medium to form an intense pink water-soluble dye that is stable and has a maximum absorption at 508 nm. A graphs of absorbance versus concentration show that Beer’s law is obeyed over the concentration range of 1-40 and 5-400 µg.ml-1 of Procaine HCl, with detection limits of 0.874 and 3.75 µg.ml-1 of Procaine HCl for batch and FIA methods respectively. The FIA average sample throughput was 70 h-1. A
... Show MoreThe present work establishes and validates HILIC strategies simple, accurate, exact and precise in pure form and inpharmaceutical dosage for separating and determining theophylline. These methods are developed on HILIC theophyllineseparation in columns ZIC2 and ZIC3. The eluent was prepared by mixing buffer (20% sodium acetate-40 mM, pH 5.5), 80%acetonitrile. The flow rate is 0.8 mL/min, with gradient elution and UV detection at 270 nm. In the ZIC2 and ZIC3 columns oftheophylline determining, the concentration range was 0.01-4μg.ml-1. The lower limit of detection and quantification fortheophylline were determined as 0.130, 0.190 μg.ml-1 and accuracy were 99.70%, 99.58% on ZIC2 and ZIC3, respectively. TheHILIC methods developed and validat
... Show MoreThe current research aims at finding out how to properly and correctly manage waste and solid waste and reduce the difficulties faced by all countries. However, it is becoming increasingly acute in developed cities because their economies are growing rapidly. It is necessary to identify the modern methods used in developed countries in managing wastes. The use of modern waste management techniques is a coordinated effort by international agencies within the borders responsible for them. The problem of the study can be identified in the lack of clarity of environmental management procedures in place. The importance of the research contributes to providing greater capacity to the administrative and technical leadership in the municipality
... Show More