Preferred Language
Articles
/
fxgqTJQBVTCNdQwC-gR4
Conversion of preferred crystalline orientation by annealing and its impacts on the structural, electronic, and optical properties of pulsed laser-deposited CdO thin films
...Show More Authors

Scopus Clarivate Crossref
View Publication
Publication Date
Tue Oct 02 2018
Journal Name
Iraqi Journal Of Physics
Study the effect of thermal annealing on some physical properties of thin Cu2SiO3 films prepared by pulsed laser deposition
...Show More Authors

The Cu2SiO3 composite has been prepared from the binary compounds (Cu2O, and SiO2) with high purity by solid state reaction. The Cu2SiO3 thin films were deposited at room temperature on glass and Si substrates with thickness 400 nm by pulsed laser deposition method. X-ray analysis showed that the powder of Cu2SiO3 has a polycrystalline structure with monoclinic phase and preferred orientation along (111) direction at 2θ around 38.670o which related to CuO phase. While as deposited and annealed Cu2SiO3 films have amorphous structure. The morphological study revealed that the grains have granular and elliptical shape, with average diameter of 163.63 nm. The electrical properties which represent Hall effect were investigated. Hall coeffici

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
World Scientific News
Effect of annealing temperature on the structural and optical properties of CdSe: 1% Ag thin films
...Show More Authors

Publication Date
Sun Apr 23 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Study Of Thickness And Annealing Temperature Effect On Structural and Optical Properties For ZnO Thin Films
...Show More Authors

  In the present work, We study the structural and optical properties of (ZnO), which are prepared by thermal evaporation technique, where deposit (Zn) on glass substrates at different thicknesses (150,250,350)nm, deposited on glass substrate at R.T. with rate (5 nm sec-1). And then we make oxidation for (Zn) films at temperature (500) and using the air for one hour, and last annealing samples at temperature (400,500) for one hour. The investigation of (XRD) indicates that the (ZnO) films are polycrystalline type of hexagonal with a preferred orientation along (002) to all samples and analysis reveals that the intensity of this orientation increases with the increase of the thickness and annealing temperature.   &nbsp

... Show More
View Publication Preview PDF
Publication Date
Sun May 07 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Study the Effect of Annealing Temperature on the Structural, Optical and Electrical Properties of ZnS Thin Films
...Show More Authors

The structural, optical and electrical properties of ZnS films prepared by vacuum
evaporation technique on glass substrate at room temperature and treated at different
annealing temperatures (323, 373, 423)K of thickness (0.5)µm have been studied. The
structure of these films is determined by X-ray diffraction (XRD). The X-ray diffraction
studies show that the structure is polycrystalline with cubic structure, and there are strong
peaks at the direction (111).
The optical properties investigated which include the absorbance and transmittance
spectra, energy band gab, absorption coefficient, and other optical constants. The results
showed that films have direct optical transition. The optical band gab was

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 26 2012
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
Study the Effect of Annealing Temperature on the Structural, Optical and Electrical Properties of ZnS Thin Films
...Show More Authors

The structural, optical and electrical properties of ZnS films prepared by vacuum evaporation technique on glass substrate at room temperature and treated at different annealing temperatures (323, 373, 423)K of thickness (0.5)µm have been studied. The structure of these films is determined by X-ray diffraction (XRD). The X-ray diffraction studies show that the structure is polycrystalline with cubic structure, and there are strong peaks at the direction (111). The optical properties investigated which include the absorbance and transmittance spectra, energy band gab, absorption coefficient, and other optical constants. The results showed that films have direct optical transition. The optical band gab was found to be in the range t

... Show More
Publication Date
Mon Mar 30 2020
Journal Name
Neuroquantology
Structural and Optical Analysis of Rhodamine 6G Thin Films Prepared by Q-switched Nd: YAG Pulsed Laser Deposition
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Fri Jan 11 2019
Journal Name
Iraqi Journal Of Physics
Effect of thickness on the optical properties of ZnO thin films prepared by pulsed laser deposition technique (PLD)
...Show More Authors

Zinc Oxide (ZnO) thin films of different thickness were prepared
on ultrasonically cleaned corning glass substrate, by pulsed laser
deposition technique (PLD) at room temperature. Since most
application of ZnO thin film are certainly related to its optical
properties, so the optical properties of ZnO thin film in the
wavelength range (300-1100) nm were studied, it was observed that
all ZnO films have high transmittance (˃ 80 %) in the wavelength
region (400-1100) nm and it increase as the film thickness increase,
using the optical transmittance to calculate optical energy gap (Eg
opt)
show that (Eg
opt) of a direct allowed transition and its value nearly
constant (~ 3.2 eV) for all film thickness (150

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Jan 12 2014
Journal Name
International Journal Of Current Engineering And Technology
The Effect of Sb Dopant and Annealing Temperature on the Structural and Optical Properties of GeSe Thin Films
...Show More Authors

The pure and Sb doped GeSe thin films have been prepared by thermal flash evaporation technique. Both the structural and optical measurement were carried out for as deposited and annealed films at different annealing temperatures.XRD spectra revealed that the all films have one significant broad amorphous peak except for pure GeSe thin film which annealed at 573 K, it has sharp peak belong to orthorhombic structure nearly at 2θ=33o. The results of the optical studies showed that the optical transition is direct and indirect allowed. The energy gap in general increased with increasing annealing temperature and decreased with increase the ratio of Sb dopant. The optical parameters such as refractive index, extinction coefficient and real and

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 20 2014
Journal Name
International Journal Of Current Engineering And Technology
The Effect of Sb Dopant and Annealing Temperature on the Structural and Optical Properties of GeSe Thin Films
...Show More Authors

The pure and Sb doped GeSe thin films have been prepared by thermal flash evaporation technique. Both the structural and optical measurement were carried out for as deposited and annealed films at different annealing temperatures.XRD spectra revealed that the all films have one significant broad amorphous peak except for pure GeSe thin film which annealed at 573 K, it has sharp peak belong to orthorhombic structure nearly at 2θ=33o . The results of the optical studies showed that the optical transition is direct and indirect allowed. The energy gap in general increased with increasing annealing temperature and decreased with increase the ratio of Sb dopant. The optical parameters such as refractive index, extinction coefficient and r

... Show More
Publication Date
Sun Apr 16 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Substrate Temperature Effect on the Structure, Morphological and Optical Properties of CuO/Sapphire Thin Films Prepared by Pulsed Laser deposition
...Show More Authors

This paper addresses the substrate temperature effect on the structure, morphological and optical properties of copper oxide (CuO) thin films deposited by pulsed laser deposition (PLD) method on sapphire substrate of 150nm thickness. The films deposited at two different substrate temperatures (473 and 673)K. The atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and UV-VIS transmission spectroscopy were employed to characterize the size, morphology, crystalline structure and optical properties of the prepared thin films. The surface characteristics were studied by using AFM. It is found that as the substrate temperature increases, the grain size increased but the surface roughness decreased.  The FTIR spec

... Show More
View Publication Preview PDF