Cryptocurrency became an important participant on the financial market as it attracts large investments and interests. With this vibrant setting, the proposed cryptocurrency price prediction tool stands as a pivotal element providing direction to both enthusiasts and investors in a market that presents itself grounded on numerous complexities of digital currency. Employing feature selection enchantment and dynamic trio of ARIMA, LSTM, Linear Regression techniques the tool creates a mosaic for users to analyze data using artificial intelligence towards forecasts in real-time crypto universe. While users navigate the algorithmic labyrinth, they are offered a vast and glittering selection of high-quality cryptocurrencies to select. The ability of the tool in analyzing past data on historical prices combined with machine learning, orchestrate an appealing scene of predictions equipped with choices and information, users turn into the main characters in a financial discovery story conducted by the cryptocurrency system. The numerical results also support the effectiveness of the tool as highlighted by standout corresponding numbers such as lower RMSE value 150.96 for ETH and minimized normalized RMSE scaled down to under, which is. The quantitative successes underline the usefulness of this tool to give precise predictions and improve user interaction in an entertaining world of cryptocurrency investments.
The study aims at finding out:
1. The students' attitude towards the mixed learning at the university.
2. The statistically significant differences in attitude towards the mixed learning at the university according to the specialization variable.
3. The statistically significant differences in attitude towards the mixed learning at the university according to the gender variable.
The researcher has constructed a scale for measuring the students' attitude towards the mixed learning at the university.
After assuring its validity and reliability, the scale has been given to a sample of (100) students. The sample is selected randomly from (4) colleges of the university of Baghdad, (2) for scientific specialization and (2)for h
Online examination is an integral and vital component of online learning. Student authentication is going to be widely seen when one of these major challenges within the online assessment. This study aims to investigate potential threats to student authentication in the online examinations. Adopting cheating in E-learning in a university of Iraq brings essential security issues for e-exam . In this document, these analysts suggested a model making use of a quantitative research style to confirm the suggested aspects and create this relationship between these. The major elements that might impact universities to adopt cheating electronics were declared as Educational methods, Organizational methods, Teaching methods, Technical meth
... Show MoreThe purpose of the study is to identify the teaching techniques that mathematics' teachers use due to the Brain-based learning theory. The sample is composed of (90) teacher: (50) male, (40) female. The results have shown no significant differences between male and female responses' mean. Additionally, through the observation of author, he found a lack of using Brain-based learning techniques. Thus, the researcher recommend that it is necessary to involve teachers in remedial courses to enhance their ability to create a classroom that raise up brain-based learning skills.
The problem of the paper focused on the role of the learning organization in the crisis management strategy, and the extent of the actual interest in both the learning organization and the crisis management and aimed at diagnosing and analyzing that and surrounding questions. The Statistical Package for the Social Sciences (SPSS) program was used to calculate the results and the correlation coefficient between the two main variables. The methodology was descriptive and analytical. The case study was followed by a questionnaire that was distributed to a sample of 31 teachers. The paper adopted a seven-dimensional model of systemic thinking that encourages questioning, empowerment, provision of advanced technologies, and strategic lea
... Show MoreIn this article, Convolution Neural Network (CNN) is used to detect damage and no damage images form satellite imagery using different classifiers. These classifiers are well-known models that are used with CNN to detect and classify images using a specific dataset. The dataset used belongs to the Huston hurricane that caused several damages in the nearby areas. In addition, a transfer learning property is used to store the knowledge (weights) and reuse it in the next task. Moreover, each applied classifier is used to detect the images from the dataset after it is split into training, testing and validation. Keras library is used to apply the CNN algorithm with each selected classifier to detect the images. Furthermore, the performa
... Show MoreWhenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model bas
... Show More