Preferred Language
Articles
/
fxfyUZEBVTCNdQwCHJTg
Forecasting Cryptocurrency Market Trends with Machine Learning and Deep Learning
...Show More Authors

Cryptocurrency became an important participant on the financial market as it attracts large investments and interests. With this vibrant setting, the proposed cryptocurrency price prediction tool stands as a pivotal element providing direction to both enthusiasts and investors in a market that presents itself grounded on numerous complexities of digital currency. Employing feature selection enchantment and dynamic trio of ARIMA, LSTM, Linear Regression techniques the tool creates a mosaic for users to analyze data using artificial intelligence towards forecasts in real-time crypto universe. While users navigate the algorithmic labyrinth, they are offered a vast and glittering selection of high-quality cryptocurrencies to select. The ability of the tool in analyzing past data on historical prices combined with machine learning, orchestrate an appealing scene of predictions equipped with choices and information, users turn into the main characters in a financial discovery story conducted by the cryptocurrency system. The numerical results also support the effectiveness of the tool as highlighted by standout corresponding numbers such as lower RMSE value 150.96 for ETH and minimized normalized RMSE scaled down to under, which is. The quantitative successes underline the usefulness of this tool to give precise predictions and improve user interaction in an entertaining world of cryptocurrency investments.

Scopus Crossref
View Publication
Publication Date
Sat Apr 30 2022
Journal Name
Revue D'intelligence Artificielle
Performance Evaluation of SDN DDoS Attack Detection and Mitigation Based Random Forest and K-Nearest Neighbors Machine Learning Algorithms
...Show More Authors

Software-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne

... Show More
View Publication
Scopus (11)
Crossref (6)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science (ijeecs)
A new smart approach of an efficient energy consumption management by using a machine-learning technique
...Show More Authors

Many consumers of electric power have excesses in their electric power consumptions that exceed the permissible limit by the electrical power distribution stations, and then we proposed a validation approach that works intelligently by applying machine learning (ML) technology to teach electrical consumers how to properly consume without wasting energy expended. The validation approach is one of a large combination of intelligent processes related to energy consumption which is called the efficient energy consumption management (EECM) approaches, and it connected with the internet of things (IoT) technology to be linked to Google Firebase Cloud where a utility center used to check whether the consumption of the efficient energy is s

... Show More
Crossref
Publication Date
Thu Aug 01 2024
Journal Name
Advances In Science And Technology Research Journal
Power Predicting for Power Take-Off Shaft of a Disc Maize Silage Harvester Using Machine Learning
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Development of an Optimized Botnet Detection Framework based on Filters of Features and Machine Learning Classifiers using CICIDS2017 Dataset
...Show More Authors
Abstract<p>Botnet is a malicious activity that tries to disrupt traffic of service in a server or network and causes great harm to the network. In modern years, Botnets became one of the threads that constantly evolving. IDS (intrusion detection system) is one type of solutions used to detect anomalies of networks and played an increasing role in the computer security and information systems. It follows different events in computer to decide to occur an intrusion or not, and it used to build a strategic decision for security purposes. The current paper <italic>suggests</italic> a hybrid detection Botnet model using machine learning approach, performed and analyzed to detect Botnet atta</p> ... Show More
View Publication
Scopus (15)
Crossref (9)
Scopus Crossref
Publication Date
Tue May 07 2019
Journal Name
Acm Journal On Emerging Technologies In Computing Systems
Neuromemrisitive Architecture of HTM with On-Device Learning and Neurogenesis
...Show More Authors

Hierarchical temporal memory (HTM) is a biomimetic sequence memory algorithm that holds promise for invariant representations of spatial and spatio-temporal inputs. This article presents a comprehensive neuromemristive crossbar architecture for the spatial pooler (SP) and the sparse distributed representation classifier, which are fundamental to the algorithm. There are several unique features in the proposed architecture that tightly link with the HTM algorithm. A memristor that is suitable for emulating the HTM synapses is identified and a new Z-window function is proposed. The architecture exploits the concept of synthetic synapses to enable potential synapses in the HTM. The crossbar for the SP avoids dark spots caused by unutil

... Show More
View Publication
Scopus (12)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Sun Mar 31 2024
Journal Name
Iraqi Geological Journal
Permeability Prediction and Facies Distribution for Yamama Reservoir in Faihaa Oil Field: Role of Machine Learning and Cluster Analysis Approach
...Show More Authors

Empirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Tue Feb 28 2023
Journal Name
Iraqi Journal Of Science
Benchmarking Framework for COVID-19 Classification Machine Learning Method Based on Fuzzy Decision by Opinion Score Method
...Show More Authors

     Coronavirus disease (COVID-19), which is caused by SARS-CoV-2, has been announced as a global pandemic by the World Health Organization (WHO), which results in the collapsing of the healthcare systems in several countries around the globe. Machine learning (ML) methods are one of the most utilized approaches in artificial intelligence (AI) to classify COVID-19 images. However, there are many machine-learning methods used to classify COVID-19. The question is: which machine learning method is best over multi-criteria evaluation? Therefore, this research presents benchmarking of COVID-19 machine learning methods, which is recognized as a multi-criteria decision-making (MCDM) problem. In the recent century, the trend of developing

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (7)
Scopus Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Applied Geophysics
Predicting dynamic shear wave slowness from well logs using machine learning methods in the Mishrif Reservoir, Iraq
...Show More Authors

View Publication
Scopus (8)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Applied Geophysics
Predicting dynamic shear wave slowness from well logs using machine learning methods in the Mishrif Reservoir, Iraq
...Show More Authors

Crossref (7)
Crossref
Publication Date
Thu Dec 01 2016
Journal Name
Al.qadisiya Journal For The Sciences Of Physical Education
Comparing self-learning associated with the model and learning reverse fashioned way of partial way to learn Olympic lifts for beginners
...Show More Authors

Abstract The purpose of this study, teach the art of performing Olympic lifts (snatch and, clean and jerk) using the two methods are instructional (self-learning associated with the model) and (reverse style of partial way). Identify the effectiveness of these methods in learning the art of performance and style of the best Olympic lifting in the learning and retention of novice for Olympic lifts. The research sample consisted of 16 lifters were selected purposively representing specialist center for the care of athletic talent to weightlifting for ages 14 years. The sample was divided into two experimental, Each group (8) eight weightlifters. The experimental group used the style of the first self-learning associated with the m

... Show More
View Publication Preview PDF