This paper studies a novel technique based on the use of two effective methods like modified Laplace- variational method (MLVIM) and a new Variational method (MVIM)to solve PDEs with variable coefficients. The current modification for the (MLVIM) is based on coupling of the Variational method (VIM) and Laplace- method (LT). In our proposal there is no need to calculate Lagrange multiplier. We applied Laplace method to the problem .Furthermore, the nonlinear terms for this problem is solved using homotopy method (HPM). Some examples are taken to compare results between two methods and to verify the reliability of our present methods.
In this paper, a new third kind Chebyshev wavelets operational matrix of derivative is presented, then the operational matrix of derivative is applied for solving optimal control problems using, third kind Chebyshev wavelets expansions. The proposed method consists of reducing the linear system of optimal control problem into a system of algebraic equations, by expanding the state variables, as a series in terms of third kind Chebyshev wavelets with unknown coefficients. Example to illustrate the effectiveness of the method has been presented.
A new efficient Two Derivative Runge-Kutta method (TDRK) of order five is developed for the numerical solution of the special first order ordinary differential equations (ODEs). The new method is derived using the property of First Same As Last (FSAL). We analyzed the stability of our method. The numerical results are presented to illustrate the efficiency of the new method in comparison with some well-known RK methods.
Abstract
The problem of missing data represents a major obstacle before researchers in the process of data analysis in different fields since , this problem is a recurrent one in all fields of study including social , medical , astronomical and clinical experiments .
The presence of such a problem within the data to be studied may influence negatively on the analysis and it may lead to misleading conclusions , together with the fact that these conclusions that result from a great bias caused by that problem in spite of the efficiency of wavelet methods but they are also affected by the missing of data , in addition to the impact of the problem of miss of accuracy estimation
... Show MoreIn this paper, third order non-polynomial spline function is used to solve 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of this method, and to compare the computed results with other known methods.
Abstract:
We can notice cluster data in social, health and behavioral sciences, so this type of data have a link between its observations and we can express these clusters through the relationship between measurements on units within the same group.
In this research, I estimate the reliability function of cluster function by using the seemingly unrelate
... Show MoreA simulation study is used to examine the robustness of some estimators on a multiple linear regression model with problems of multicollinearity and non-normal errors, the Ordinary least Squares (LS) ,Ridge Regression, Ridge Least Absolute Value (RLAV), Weighted Ridge (WRID), MM and a robust ridge regression estimator MM estimator, which denoted as RMM this is the modification of the Ridge regression by incorporating robust MM estimator . finialy, we show that RMM is the best among the other estimators
In this paper, several types of space-time fractional partial differential equations has been solved by using most of special double linear integral transform â€double Sumudu â€. Also, we are going to argue the truth of these solutions by another analytically method “invariant subspace methodâ€. All results are illustrative numerically and graphically.
In this paper, we study the growth of solutions of the second order linear complex differential equations insuring that any nontrivial solutions are of infinite order. It is assumed that the coefficients satisfy the extremal condition for Yang’s inequality and the extremal condition for Denjoy’s conjecture. The other condition is that one of the coefficients itself is a solution of the differential equation .
Nonlinear time series analysis is one of the most complex problems ; especially the nonlinear autoregressive with exogenous variable (NARX) .Then ; the problem of model identification and the correct orders determination considered the most important problem in the analysis of time series . In this paper , we proposed splines estimation method for model identification , then we used three criterions for the correct orders determination. Where ; proposed method used to estimate the additive splines for model identification , And the rank determination depends on the additive property to avoid the problem of curse dimensionally . The proposed method is one of the nonparametric methods , and the simulation results give a
... Show MoreIn this paper, a new analytical method is introduced to find the general solution of linear partial differential equations. In this method, each Laplace transform (LT) and Sumudu transform (ST) is used independently along with canonical coordinates. The strength of this method is that it is easy to implement and does not require initial conditions.