Preferred Language
Articles
/
fxebPo8BVTCNdQwC4GW_
Classification of Arabic Writer Based on Clustering Techniques
...Show More Authors

Arabic text categorization for pattern recognitions is challenging. We propose for the first time a novel holistic method based on clustering for classifying Arabic writer. The categorization is accomplished stage-wise. Firstly, these document images are sectioned into lines, words, and characters. Secondly, their structural and statistical features are obtained from sectioned portions. Thirdly, F-Measure is used to evaluate the performance of the extracted features and their combination in different linkage methods for each distance measures and different numbers of groups. Finally, experiments are conducted on the standard KHATT dataset of Arabic handwritten text comprised of varying samples from 1000 writers. The results in the generation step are obtained from multiple runs of individual clustering methods for each distance measures. The best results are achieved when intensity, lines slope and their

Scopus
Publication Date
Thu Dec 22 2011
Journal Name
Alustath
Phonological Adaptation of English Loanwords into Iraqi Arabic
...Show More Authors

MR Younus, Alustath, 2011

View Publication
Publication Date
Tue Jun 14 2016
Journal Name
Al-academy
Recruitment of Arabic calligraphy in gold jewelry styles
...Show More Authors

Search came (the employment of Arabic calligraphy in gold jewelry styles) four chapters, the first chapter of which dealt:A/research problem B/importance of research C/targets search D/ Define termsAs the aim of the research (to identify the employment of different forms of Arabic calligraphy on gold jewelry styles).It came in the second quarter (the theoretical framework and previous studies), some of the topics reviewed in which diversities researcher aesthetic and functional, and various uses that filled Arabic calligraphy.The third chapter outlining the researcher methodology and the research community, has a special form for the analysis of the samples are designed as form is offered on a number of experts in the field of jurisdicti

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Applied Energy
Deep clustering of Lagrangian trajectory for multi-task learning to energy saving in intelligent buildings using cooperative multi-agent
...Show More Authors

The intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is

... Show More
View Publication
Scopus (31)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Prioritized Text Detergent: Comparing Two Judgment Scales of Analytic Hierarchy Process on Prioritizing Pre-Processing Techniques on Social Media Sentiment Analysis
...Show More Authors

Most companies use social media data for business. Sentiment analysis automatically gathers analyses and summarizes this type of data. Managing unstructured social media data is difficult. Noisy data is a challenge to sentiment analysis. Since over 50% of the sentiment analysis process is data pre-processing, processing big social media data is challenging too. If pre-processing is carried out correctly, data accuracy may improve. Also, sentiment analysis workflow is highly dependent. Because no pre-processing technique works well in all situations or with all data sources, choosing the most important ones is crucial. Prioritization is an excellent technique for choosing the most important ones. As one of many Multi-Criteria Decision Mak

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Tue Dec 31 2024
Journal Name
Journal Of Soft Computing And Computer Applications
Enhancing Image Classification Using a Convolutional Neural Network Model
...Show More Authors

In recent years, with the rapid development of the current classification system in digital content identification, automatic classification of images has become the most challenging task in the field of computer vision. As can be seen, vision is quite challenging for a system to automatically understand and analyze images, as compared to the vision of humans. Some research papers have been done to address the issue in the low-level current classification system, but the output was restricted only to basic image features. However, similarly, the approaches fail to accurately classify images. For the results expected in this field, such as computer vision, this study proposes a deep learning approach that utilizes a deep learning algorithm.

... Show More
View Publication
Crossref
Publication Date
Mon Jan 20 2025
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Assessing Landsat Processing Levels and Support Vector Machine Classification
...Show More Authors

The availability of different processing levels for satellite images makes it important to measure their suitability for classification tasks. This study investigates the impact of the Landsat data processing level on the accuracy of land cover classification using a support vector machine (SVM) classifier. The classification accuracy values of Landsat 8 (LS8) and Landsat 9 (LS9) data at different processing levels vary notably. For LS9, Collection 2 Level 2 (C2L2) achieved the highest accuracy of (86.55%) with the polynomial kernel of the SVM classifier, surpassing the Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) at (85.31%) and Collection 2 Level 1 (C2L1) at (84.93%). The LS8 data exhibits similar behavior. Conv

... Show More
View Publication
Publication Date
Thu Jan 01 2015
Journal Name
Applied And Computational Mathematics
Texture Classification Using Spline, Wavelet Decomposition and Fractal Dimension
...Show More Authors

View Publication
Crossref (3)
Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Satellite image classification using proposed singular value decomposition method
...Show More Authors

In this work, satellite images for Razaza Lake and the surrounding area
district in Karbala province are classified for years 1990,1999 and
2014 using two software programming (MATLAB 7.12 and ERDAS
imagine 2014). Proposed unsupervised and supervised method of
classification using MATLAB software have been used; these are
mean value and Singular Value Decomposition respectively. While
unsupervised (K-Means) and supervised (Maximum likelihood
Classifier) method are utilized using ERDAS imagine, in order to get
most accurate results and then compare these results of each method
and calculate the changes that taken place in years 1999 and 2014;
comparing with 1990. The results from classification indicated that

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Aug 01 2015
Journal Name
2015 Ieee Conference On Computational Intelligence In Bioinformatics And Computational Biology (cibcb)
Granular computing approach for the design of medical data classification systems
...Show More Authors

View Publication
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Iraqi Journal Of Physics
Classification of brain tumors using the multilayer perceptron artificial neural network
...Show More Authors

Information from 54 Magnetic Resonance Imaging (MRI) brain tumor images (27 benign and 27 malignant) were collected and subjected to multilayer perceptron artificial neural network available on the well know software of IBM SPSS 17 (Statistical Package for the Social Sciences). After many attempts, automatic architecture was decided to be adopted in this research work. Thirteen shape and statistical characteristics of images were considered. The neural network revealed an 89.1 % of correct classification for the training sample and 100 % of correct classification for the test sample. The normalized importance of the considered characteristics showed that kurtosis accounted for 100 % which means that this variable has a substantial effect

... Show More
View Publication Preview PDF
Crossref (3)
Crossref