The aim of the work is synthesis and characterization of bidentate ligand [dipotassium sodium7-((E)-2-(2-((Z)-1-carboxylatoethylideneamino)thiazol-4-yl)-2 (carboxylatemethoxyimino) acet amido)-8-oxo-3-vinyl-5- thia-1-azabicyclo[4.2.0] oct-2- ene-2- carboxylate] [Nak2L], from the reaction of cefixime with sodium pyruvet to produce the ligand [Nak2L], the reaction was carried out in methanol as a solvent under reflux. The prepared ligand [Nak2L] which was characterized by FT-IR, UV-Vis spectroscopy, 1H, 13C-NMR spectra, Mass spectra, (C.H.N) and melting point. The mixed ligand complexes were prepared from ligand [Nak2L] was used as a primary ligand while 8-hydroxy quinoline [Q] was used as a secondary ligand with metal ion M(?).Where M(?) =
... Show MoreSix transition metal complexes of Cr (III), Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) were prepared using 1,2-bis -(4-Amino-2,3-dimethyl-1- phenyl-pyrazolinyl)-diimino ethane(L) as ligand. These complexes were characterized by elemental analysis, magnetic susceptibility, UV/VIS and FT-IR spectroscopy. These data showed that the solid complexes of Mn(II), Co(II), Zn(II) were tetrahedral geometry, and Cr(III) was octahedral while the symmetry around Ni(II) and Cu(II) ions with the new ligand were square planar of the formula [ML]Cl2 , M=Ni(II) and Cu(II).
A simple method for the determina
... Show MoreIsobaric Vapor-Liquid-Liquid equilibrium data for the binary systems ethyl acetate + water, toluene + water and the ternary system toluene + ethyl acetate + water were determined by a modified equilibrium still, the still consisted of a boiling and a condensation sections supplied with mixers that helped to correct the composition of the recycled condensed liquid and the boiling temperature readings in the condensation and boiling sections respectively. The VLLE data where predicted and correlated using the Peng-Robinson Equation of State in the vapor phase and one of the activity coefficient models Wilson, NRTL, UNIQUAC and the UNIFAC in the liquid phase and also were correlated using the Peng-Robinson Equation of State in both the vapo
... Show MoreThe magnetic properties of a pure Nickel metal and Nickel-Zinc-Manganese ferrites having the chemical formula Ni0.1(Zn0.4Mn0.6)0.9Fe2O4 were studied. The phase formation and crystal structure was studied by using x-ray diffraction which confirmed the formation of pure single spinel cubic phase with space group (Fd3m) in the ferrite. The samples microstructure was studied with scanning electron microstructure and EDX. The magnetic properties of the ferrite and nickel metal were characterized by using a laboratory setup with a magnetic field in the range from 0-500 G. The ferrite showed perfect soft spinel phase behavior while the nickel sample showed higher magnetic loss an
... Show MoreNeutral and semi-synthetic hydrophilic polymers are widely used
in pharmaceutical technology to fomlUlate as controlled release drugs
delivery systems ,cellulose derivatives is biocompatibilily, biodegradability , non-toxicity, its is a good candidate as drug carrier. In this study, polymers were used as cellulose derivatives like Methylcellulose (MC) & Soditun Carboxymetl1ylcellulose (NaCMC) as hydrogels for controlled delivery for two kinds of drugs, Cefotaxine
& Amoxycill ine trihydrate i n different media (Distilled water, Normal Saline & Buffer solution PH=2). It has been shown that for sodium Carboxymethylcellulnse the drug release rate is more than the Mcthylcellulose and that the release
... Show MoreIn this work , the ligand [N-(4-Methoxybenzoyl amino)-thioxomethyl] Methionine acid has been synthesized by the reaction of 4- Methoxybenzoyl isothiocyanate with methionine acid . The metal complexes were prepared through the reaction of metals chlorides of Co(II) , Ni(II), Cu(II), Zn(II) and Cd(II) in ethanol as solvent . The ligand (MbM) and its metal complexes have been characterized by elemental analysis (CHNS), IR, 1H-13CNMR and UV- Vis spectra, magnetic susceptibility measurements, molar conductivity, melting points and atomic absorption. The metal-ligand ratio was determined by mole ratio method. The suggested structures for the Co(II), Ni(II), Cd(II) and Zn(II) complexes are tetrahedral geometry and the Cu(II) complex
... Show MoreNovel bidentate Schiff bases having nitrogen-sulphur donor sequence was synthesized from condensation of racemate camphor, (R)-camphor and (S)-camphor with Methyl hydrazinecarbodithioate (SMDTC). Its metal complexes were also prepared through the reaction of these ligands with silver and bismuth salts. All complexes were characterized by elemental analyses and various physico-chemical techniques. These Schiff bases behaved as uninegatively charged bidentate ligands and coordinated to the metal ions via ?-nitrogen and thiolate sulphur atoms. The NS Schiff bases formed complexes of general formula, [M(NS)2] or [M(NS)2.H2O] where M is BiIII or AgI, the expected geometry is octahedral for Bi(III) complexes while Ag(I) is expected to oxidized t
... Show Morenew six mixed ligand complexes of some transition metal ions Manganese (II), Cobalt(II), Iron (II), Nickel (II) , and non transition metal ion zinc (II) And Cadmium(II) with L-valine (Val H ) as a primary ligand and Saccharin (HSac) as a secondary ligands have been prepared. All the prepared complexes have been characterized by molar conductance, magnetic susceptibility infrared, electronic spectral, Elemental microanalysis (C.H.N) and AA . The complexes with the formulas [M(Val)2(HSac)2] M= Mn (II) , Fe (II) , Co(II) ,Ni(II), Cu (II),Zn(II) and Cd(II) L- Val H= (C5H11NO2) , C7H5NO3S The study shows that these complexes have octahedral geometry; The metal complexes have been screened for their in microbiological activities against bacteria.
... Show MoreThis work reports the synthesis and characterization of some Co(111), Ni(11), Cu(11), Zn(l 1), Cd(1 1) and Hg(11) chelates of the new benzothia-zolylazo Ligand ( 5-Me-BTAC ) . The compounds were Characterized by IR , electronic spectroscopy, magnetic susceptibility ,elemental analysis and molar conductance measurements . The elemental analysis suggest the formula [ ML2 ] x.nH2O where x=Cl , n=1 for M= Co(111) and x=o , n=o for the remaining metal ions Electronic spectra and magnetic susceptibility data has supported the proposed octahedral geometry of Co(111) Ni(11) and Cu(1 I) Complexes. Conductivity measurements refer to nonionic structure of these Complexes except of Co(111) .