The present study was conducted to determine the effect of different concentrations of putrescine and spermidine at all stages of regeneration (callogenesis, somatic embryos multiplication, germination and rooting)) of date palm cultivar Barhee. Shoot tips were eradicated from 2-3 years old offshoots, surface sterilized and inoculated onto Murashiege and Skoog, 1962 (MS) medium supplemented with 20 mg/L 2,4-D and 3 mg/L N6-2-isopentyl adenine (2ip). Primary callus was obtained after 24 weeks on the nutrient medium. Calli were then transferred onto fresh MS medium containing 0.0, 50, 100 or 150 mg/L of putrescine or spermidine individually. Results were recorded after 12 weeks. A significant increase in embryonic callus fresh weights reached 4.093 g at the concentration 100mg/l of Spermidine and 3.817 g at 100 mg/L of putrescine. Embryogenic callus was developed on MS media using different concentration 0,50,100 or 150mg/L of putrescine or spermidine. Results indicated that the highest embryo number reached 28.67embryo at the concentration 100mg/L of spermidine. The highest significant root number 5.20 root/plant appeared with rooting medium supplemented 100mg/l of Spermidine. Addition of Putrescine as a supplement to the rooting medium at concentrations 100mg/l reached 2.60 root/plant. It is concluded that both putrescine and spermidine may play a positive role in increasing callus growth and regulation of somatic embryogenesis in Phoenix dactylifera var. Brahee tissue cultures.
Background: the aim of this study was to evaluate the effect of different surface acids treatments (37%phospjoric acid, 5%hydrofluoric acid, 1.23 acidulated phosphate fluoride) of feldspathic ceramic VITA 3D MASTER , and the effect of thermocycling on shear bond strength using a ceramic repair kit (ivoclar/vivadent). Material and Methods: sixty Nickel-Chromium metal base plates were prepared(9mm diameter,3mm depth) using lost wax technique, 2mm thick layer of ceramic(VITA 3D MASTER) fused to metal plates, all specimens were embedded in acrylic resin blocks except their examined surfaces and divided into 3 main groups 20 specimens each, Grp A: treatment with 37%phosphoric acid for 2 mins, Grp B: etching with 5% hydrofluoric acid for 2mins,
... Show MoreThe present work involves studying the effect of electrolyte composition [@1= 0.5 wt.% NH4F / 5% H2O / 5% Glycerol (GLY)/ 90% Ethylene Glycol (EG)] and [ @2= 0.5 wt. % NH4F / 5% H2O / 95% Ethylene Glycol (EG)] on the structural and photoelectrochemical properties of titania nanotubes arrays (TNTAs). TNTAs substrates were successfully carried out via anodization technique and were carried out in 40 V for one hour in different electrolytes (@1, and @2). The properties of physicochemical of TNTAs were distinguished via an X-ray Diffractometer (XRD), Field Emission Scanning Electron Microscope (FESEM), an Energy Dispersive X-ray (EDX), and UV–visible diffuse reflectance. The photoelectrochemical response of TNTAs was evaluated
... Show MoreThe present work involves studying the effect of electrolyte composition [@1= 0.5 wt.% NH4F / 5% H2O / 5% Glycerol (GLY)/ 90% Ethylene Glycol (EG)] and [ @2= 0.5 wt. % NH4F / 5% H2O / 95% Ethylene Glycol (EG)] on the structural and photoelectrochemical properties of titania nanotubes arrays (TNTAs). TNTAs substrates were successfully carried out via anodization technique and were carried out in 40 V for one hour in different electrolytes (@1, and @2). The properties of physicochemical of TNTAs were distinguished via an X-ray Diffractometer (XRD), Field Emission Scanning Electron Microscope (FESEM), an Energy Dispersive X-ray (EDX), and UV–visible diffuse reflectance. T
... Show MoreIn this study, the effect of design parameters such as pipe diameter, pipe wall thickness, pipe material and the effect of fluid velocity on the natural frequency of fluid-structure interaction in straight pipe conveying fully developed turbulent flow were investigate numerically,analytically and experimentally. Also the effect of support conditions, simply-simply and clamped-clamped was investigated. Experimentally, pipe vibrations were characterized by accelerometer mounted on the pipe wall. The natural frequencies of vibration were analyzed by using Fast Fourier Transformer (FFT). Five test sections of two different pipe diameters of 76.2
mm and 50.8 mm with two pipe thicknesses of 3.7 mm and 2.4 mm and two pipe materials,stainles
In this study the thermal conductivity of the epoxy composites were characterized as function of volume fraction, particle size of fillers and the time of immersion(30,60,90)days in water .Composites plates were prepared by incorporating (bi-directional) (0º-90º) glass fiber and silicon carbide (SiC) particles of (0.1,0.5,1)mm as particle size at (10%,20%,30%,40%) percent volume in epoxy matrix.
The composites shows slightly increase of the thermal conductivity with increasing volume fraction, particle size and increase with increasing the days of immersion in water. The maximum thermal conductivity (0.51W/m.K) was obtained before the immersion in water at 90 days for epoxy reinforcement by bi-directional glass fiber and SiC particl
This research studies the effect of adding micro, nano and hybrid by ratio (1:1) of (Al2O3,TiO2) to epoxy resin on thermal conductivity before and after immersion in HCl acid for (14 day) with normality (0.3 N) at weight fraction (0.02, 0.04, 0.06, 0.08) and thickness (6mm). The results of thermal conductivity reveled that epoxy reinforced by (Al2O3) and mixture (TiO2+Al2O3) increases with increasing the weight fraction, but the thermal conductivity (k) a values for micro and Nano (TiO2) decrease with increasing the weight fraction of reinforced, while the immersion in acidic solution (HCl) that the (k) values after immersion more than the value in before immersion.
Liquid – liquid interface reaction is the method for
preparation nanoparticles (NP'S) which depend on the super
saturation of ions that provide by using the system that consist from
toluene and water, the first one is above the second to obtain
nanoparticles (NP's) CdS at the interface separated between these
two immiscible liquid. The structure properties were characterized by
XRD-diffraction and transmission electron microscopy.
The crystalline size estimate from X-ray diffraction pattern
using Scherer equation to be about 7nm,and by TEM analysis give us
that ananosize is about 5 nm which give a strong comparable with
Bohr radius. Photoluminescence analysis give two emission peak,
the first one around
The present paper deals with studying the effect of electrical discharge machining (EDM) and shot blast peening parameters on work piece fatigue lives using copper and graphite electrodes. Response surface methodology (RSM) and the design of experiment (DOE) were used to plan and design the experimental work matrices for two EDM groups of experiments using kerosene dielectric alone, while the second was treated by the shot blast peening processes after EDM machining. To verify the experimental results, the analysis of variance (ANOVA) was used to predict the EDM models for high carbon high chromium AISI D2 die steel. The work piece fatigue lives in terms of safety factors after EDM models were developed by FEM using ANSY
... Show More