From 211 urine samples, Gram negative bacteria were isolated from only 61 urine samples with isolation percentage 28.9%. Escherichia coli were isolated percentage 70.49% while Klebsiella pneumoniae and Psendomonas aeruginosa were 8.19% and 6.55%, respectively.Proteus spp. Were isolated from 9 (14.75%), P. mirablis and P. vulgaris were isolates percentage 11.47% and 3.27%, respectively. Uroepithelial Cell Adhesin (UCA) fimbriae expression by P.mirabilis isolates was detected by the high capacity to adhesion to human uroepithetial cells, the isolate p.mirabilis U7 was adhesion to human uroepithelial cells mean no.30.2 bacteria/cell when grown on luria broth at 37C for 24h, but then grown it’s on luria agar at 37C for 24h the adhesion mean no. was 20.3 bacteria/cell. P.mirabilis U4 the adhesion mean no.4.7% and 1.65% when grown on luria broth and luria agar at 37C for 24h, respectively. MR/P and MR/K fimbriae was induced by growth on luria broth at 37C for 48h and reduced by growth on agar media. UCA fimbriae were isolated and partially purified by using 2 molar urea, heat shock, saturated ammonium sulphate 50% and deoxycholate, yielded 1.65 g/ml. SDS.PAGE of partially purified UCA-fimbriae after ammonium sulfate precipitation showed 6 protein containing bands, for 5 bands (molecular weight 17782 Dalton) represented UCA-fimbriae.
Charge transfer complex formation method has been applied for the spectrophotometric determination of erythromycin ethylsuccinate, in bulk sample and dosage form. The method was accurate, simple, rapid, inexpensive and sensitive depending on the formed charge- transfer complex between cited drug and, 2,3- Dichloro-5,6-dicyano-p- benzoquinone (DDQ) as a chromogenic reagent. The formed complex shows absorbance maxima at 587 nm against reagent blank. The calibration graph is linear in the ranges of (10 - 110) μg.mL-1 with detection limit of 0.351μg.mL-1. The results show the absence of interferences from the excipients on the determination of the drug. Therefore the proposed method has been successfully applied for the determination of eryth
... Show MoreTight reservoirs have attracted the interest of the oil industry in recent years according to its significant impact on the global oil product. Several challenges are present when producing from these reservoirs due to its low to extra low permeability and very narrow pore throat radius. Development strategy selection for these reservoirs such as horizontal well placement, hydraulic fracture design, well completion, and smart production program, wellbore stability all need accurate characterizations of geomechanical parameters for these reservoirs. Geomechanical properties, including uniaxial compressive strength (UCS), static Young’s modulus (Es), and Poisson’s ratio (υs), were measured experimentally using both static and dynamic met
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreAbstract
The study presents a mathematical model with a disaggregating approach to the problem of production planning of a fida Company; which belongs to the ministry of Industry. The study considers disaggregating the entire production into 3 productive families of (hydraulic cylinders, Aldblatt (dampers), connections hydraulics with each holds similar characteristics in terms of the installation cost, production time and stock cost. The Consequences are an ultimate use of the available production capacity as well as meeting the requirements of these families at a minimal cost using linear programming. Moreover, the study considers developing a Master production schedule that drives detailed material and production requi
... Show MoreThis research aims to predict new COVID-19 cases in Bandung, Indonesia. The system implemented two types of deep learning methods to predict this. They were the recurrent neural networks (RNN) and long-short-term memory (LSTM) algorithms. The data used in this study were the numbers of confirmed COVID-19 cases in Bandung from March 2020 to December 2020. Pre-processing of the data was carried out, namely data splitting and scaling, to get optimal results. During model training, the hyperparameter tuning stage was carried out on the sequence length and the number of layers. The results showed that RNN gave a better performance. The test used the RMSE, MAE, and R2 evaluation methods, with the best numbers being 0.66975075, 0.470
... Show MoreIn this paper, we investigate two stress-strength models (Bounded and Series) in systems reliability based on Generalized Inverse Rayleigh distribution. To obtain some estimates of shrinkage estimators, Bayesian methods under informative and non-informative assumptions are used. For comparison of the presented methods, Monte Carlo simulations based on the Mean squared Error criteria are applied.