An experimental program was conducted to determine the residual of composite Steel Beams-Reinforced Concrete (SB-RC) deck floors fabricated from a rolled steel beam topped with a reinforced concrete slab, exposed to high temperatures (fire flame) of 300, 500, and 700ºC for 1 hour, and then allowed to cool down by leaving them in the lab condition to return to the ambient temperature. The burning results showed that, by exposing them to a fire flame of up to 300ºC, no serious permanent deflection occurred. It was also noticed that the specimen recovered 93% of 19.2 mm of the deflection caused by burning. The recovered deflection of burned composite SB-RC deck floor at 500ºC was 40% of 77.9 mm of the deflection caused by burning with a residual deflection of 46.4 mm. The greatest deterioration occurred when exposed to 700ºC, at this temperature, a higher unrecoverable permanent deflection was recorded (160.3 mm) of the maximum measured burning deflection (173.8mm), indicating that the percent recovered deflection was 8%. Then, all composite SB-RC deck floors were loaded until failure to determine the percent decrease in their ultimate capacity. The results were compared with the behavior of composite SB-RC deck floor without burning (reference specimen).
The current study performs an explicit nonlinear finite element simulation to predict temperature distribution and consequent stresses during the friction stir welding (FSW) of AA 7075-T651 alloy. The ABAQUS® finite element software was used to model and analyze the process steps that involve plunging, dwelling, and traverse stages. Techniques such as Arbitrary Lagrangian–Eulerian (ALE) formulation, adaptive meshing, and computational feature of mass scaling were utilized to simulate sequence events during the friction stir welding process. The contact between the welding tool and workpiece was modelled through applying Coulomb’s friction model with a nonlinear friction coefficient value. Also, the model considered the effect of nonlin
... Show MoreThin films of (Cu2S)100-x( SnS2 )x at X=[ 30,40, &50)]% with thickness (0.9±0.03)µm , had been prepared by chemical spray pyrolysis method on glass substrates at 573 K. These films were then annealed under low pressure of(10-2) mbar ,373)423&473)K for one hour . This research includes , studying the the optical properties of (Cu2S)100-x-(SnS2)x at X=[ 30,40, &50)]% .Moreover studying the effect of annealing on their optical properties , in order to fabricate films with high stability and transmittance that can be used in solar cells. The transmittance and absorbance spectra had been recorded in the wavelength range (310 - 1100) nm in order to study the optical properties . It was found that these films had direct optical band
... Show MoreThis study presents the effect of laser energy on burning loss of magnesium from the holes' drilled in aluminum alloy 5052. High energy free running pulsed Nd:Glass laser of 300 µs pulse duration has been used to perform the experiments. The laser energy was varied from 1.0 to 8.0 Joules, The drilling processes have been carried out under atmospheric pressure and vacuum inside a specially designed chamber. Microhardness of the blind drilled holes has been investigated .The results indicated that the magnesium loss could be manipulated by adjusting the focusing conditions of the laser beam. Almost, the obtained holes were free of cracks with low taper and low sputter deposition. .The holes performed under atmospheric conditions have high
... Show MoreThe importance of specifying proper aggregate grading for achieving satisfactory performance in pavement applications has long been recognized. To improve the specifications for superior performance, there is a need to understand how differences in aggregate gradations within the acceptable limits may affect unbound aggregate base behavior. The effects of gradation on strength, modulus, and deformation characteristics of high-quality crushed rock base materials are described here. Two crushed rock types commonly used in constructing heavy-duty granular base layers in the State of Victoria, Australia, with three different gradations each were used in this study. The gradations used represent the lower, medium, and upper gradation li
... Show MoreHepatitis B is an inflammation of the liver that caused by Hepatitis B virus (HBV) which is DNA virus that infects the human and some kinds of animals such as chimpanzees and birds. This disease considered as the major disease of mankind and a serious global public health problem. HBsAg, HBeAg, HBcAb, HBeAb and HBsAb are markers used to detect the presence and the stage of infection. The current study included (181) individuals from both sexes, (137) males and (44) females. By ratio 3.11: 1.The mean age of patients 2.4033 ± 0.83519 (range 18-73) years as follows < 20 (11.6%), 21–40 (47.5%), 41–60 (29.8%) and > 60 (11.0%) . These patients are 73 (40.4%) Blood donors from Central Blood Bank, 88 (48.6%) Chronic kidney failure at Ibn –
... Show MoreIn this paper, we present new algorithm for the solution of the nonlinear high order multi-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of multi- point boundary value problems.
This work aimed to produce PVA and PVA/Ag nanofibers ultra-high sensitivity photodetector by electrospinning. The electrospinning process was used to successfully prepare PVA nanofibers and a PVA-Ag nanofiber composite. FE-SEM, XRD, UV, I-V characterizations are used to study the morphological, structural, optical, and electrical properties of the material. In contrast, the PVA-Ag nanofiber composite film displayed a cubic structure with favored orientation (200) that indicated the presence of Ag NPs in the PVA-Ag nanofibers film. While the optical energy gap for PVA was 3.96 eV, it was only 2.14 eV for PVA-Ag nanofibers composite film, making this composite sensitive to visible light, particularly green light at 550 nm with a 65% photosens
... Show More