The optimum design is characterized by structural concrete components that can sustain loads well beyond the yielding stage. This is often accomplished by a fulfilled ductility index, which is greatly influenced by the arrangement of the shear reinforcement. The current study investigates the impact of the shear reinforcement arrangement on the structural response of the deep beams using a variety of parameters, including the type of shear reinforcement, the number of lacing bars, and the lacing arrangement pattern. It was found that lacing reinforcement, as opposed to vertical stirrups, enhanced the overall structural response of deep beams, as evidenced by test results showing increases in ultimate loads, yielding, and cracking of 30.6, 20.8, and 100%, respectively. There was also a 53.6% increase in absorbed energy at the ultimate load. The shear reinforcement arrangement had a greater impact and a significant effect on the structural response than the number of lacing bars. For lacing reinforcement with a phase difference equivalent to the half-lacing cycle (i.e., phase lag lacing), the percentage of improvement under different loading stages was 6.7-27.1% and 20.8-113.3%, respectively. The structural responses are significantly impacted by the lacing arrangement; members with two and three lacing bars, respectively, exhibited improvements in ultimate load of 30.6% and 47%. Beyond the yielding stage, the phase lag lacing specimens deviated from those without phase lag lacing and normal shear stirrups because of the lacing contribution. Phase lag specimens showed more strain than specimens without phase lag lacing, meaning that the lacing reinforcement contributed more to the beam strength. It was found that the first shear cracking load of all the laced reinforced specimens was higher than that of the conventional shear stirrup specimens. Phase lag lacing produced the greatest improvement, with two bars achieving 92.44% and three bars achieving 217.07%. For the aforementioned number of bars, lacing shear reinforcement without phase lag was less successful, with 36.91% and 46.53%, respectively. Doi: 10.28991/CEJ-2025-011-02-019 Full Text: PDF
The placement of buildings and structures on/or adjacent to slopes is possible, but this poses a danger to the structure due to failures that occur in slopes. Therefore, a solution or improvement should be determined for these issues of the collapse of the structure as a result of the failure of the slopes. A laboratory model has been built to test the impact of some variables on the bearing capacity factor. The variables include the magnitude of static axial load applied at the center of footing, the depth of embedment, the spacing between geogrid reinforcement layer and the numbering of the geogrid sheet under the footing, the inclination angle of slope clayey soil (β), the spacing between the footing's edge and the slope's end (b/H). Th
... Show MoreThe influx of Arab Qahtani and Nizari tribes continued to the countries of Baluchistan and the Levant in pre-Islamic times until the Levant became open to the Arab-Islamic tide during the first century AH. The Islamic Orient until the early Islamic Arab Army reached the western borders of China. What we will see in the folds of the search.
Reinforced concrete slabs are one of the most important and complicated elements of a building. For supported edges slabs, if the ratio of long span to short span is equal or less than two then the slab is considered as two-way slab otherwise is consider as one-way slab. Two-way reinforced concrete slabs are common in use in reinforced concrete buildings due to geometrically arrangement of columns suggested by architects who prefer a symmetric distribution of columns in their plans. Elastic theory is usually used for analysis of concrete slabs. However, for several reasons design methods based on elastic principles are limited in their function. Correspondingly, limit state analysis o
This study focuses on studying the effect of reinforced steel in detail, and steel reinforcement (tensile ratio, compression ratio, size, and joint angle shape) on the strength of reinforced concrete (compressive strength) Fc' and searching for the most accurate details of concrete divisions, their behavior, and corner resistance of reinforced concrete joint. The comparison of this paper with previous studies, especially in the studied properties. The conclusions of the chapter are summarized that these effects had a clear effect and a specific effect on the behavior and resistance of the reinforced concrete corner joints under the negative moments and under their influence and the resulting stress conditions. The types of defects that can
... Show MoreThis paper studies the behavior of reinforced Reactive Powder Concrete (RPC) two-way slabs under static and repeated load. The experimental program included testing six simply supported RPC two-way slabs of 1000 mm length, 1000 mm width, and 70 mm thickness. All the tested specimens were identical in their material properties, and reinforcement details except their steel fibers content. They were cast in three pairs, each one had a different steel fibers ratio (0.5 %, 1 %, and 1.5 %) respectively. In each pair, one specimen was tested under static load and the other under five cycles of repeated load (loading-unloading). Static test results revealed that increasing steel fibres volume fraction from 0.5 % to 1 % and from 1% to 1.5%,
... Show MoreThis study involves the design of 24 mixtures of fiber reinforced magnetic reactive powder concrete containing nano Silica. Tap water has been used in mixing 12 of these mixtures, while the other 12 have been mixed using magnetic water. Nano Silica (NS) with ratios (1, 1.5, 2, 2.5 and 3) % were used. The results showed that the mixture containing 2.5%NS gives the highest compressive strength at age 7 days. Many different other tests were carried out, the results showed that the fiber reinforced magnetic reactive powder concrete containing 2.5% NS (FRMRPCCNS) has the higher bulk density, dynamic modulus of elasticity, ultrasonic pulse velocity electrical resistivity and lesser absorption than fiber reinforced
... Show MoreText categorization refers to the process of grouping text or documents into classes or categories according to their content. Text categorization process consists of three phases which are: preprocessing, feature extraction and classification. In comparison to the English language, just few studies have been done to categorize and classify the Arabic language. For a variety of applications, such as text classification and clustering, Arabic text representation is a difficult task because Arabic language is noted for its richness, diversity, and complicated morphology. This paper presents a comprehensive analysis and a comparison for researchers in the last five years based on the dataset, year, algorithms and the accuracy th
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show More